A converse to the mean value property on homogeneous trees
HTML articles powered by AMS MathViewer
- by Massimo A. Picardello and Wolfgang Woess
- Trans. Amer. Math. Soc. 311 (1989), 209-225
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974775-7
- PDF | Request permission
Abstract:
The homogeneous tree ${\mathbf {T}}$ of degree $q + 1\quad (q \geq 2)$ may be considered as a discrete analogue of the open unit disc ${\mathbf {D}}$. On ${\mathbf {D}}$, every harmonic function satisfies the mean value property (MVP) at every point. Conversely, positive functions on ${\mathbf {D}}$ having the MVP with respect to a ball with specified radius at each point of ${\mathbf {D}}$ are harmonic under certain assumptions concerning the radius function: results of this type are due to J. R. Baxter, W. Veech and others. Here we consider harmonic functions on ${\mathbf {T}}$ with respect to a natural choice of a discrete Laplacian: the analogous MVP is true in this setting. We present a Lipschitz-type condition on the radius function (which now has integer values and refers to the discrete metric of ${\mathbf {T}}$) under which harmonicity holds for positive functions whose value at each point is the mean of its values over the ball of the radius assigned to this point. The method is based upon our previous results concerning the geometrical realization of Martin boundaries of certain transition operators as the space of ends of the underlying graph.References
- John R. Baxter, Restricted mean values and harmonic functions, Trans. Amer. Math. Soc. 167 (1972), 451–463. MR 293112, DOI 10.1090/S0002-9947-1972-0293112-4
- J. R. Baxter, Harmonic functions and mass cancellation, Trans. Amer. Math. Soc. 245 (1978), 375–384. MR 511416, DOI 10.1090/S0002-9947-1978-0511416-X
- P. Cartier, Fonctions harmoniques sur un arbre, Symposia Mathematica, Vol. IX (Convegno di Calcolo delle Probabilità & Convegno di Teoria della Turbolenza, INDAM, Rome, 1971) Academic Press, London, 1972, pp. 203–270 (French). MR 0353467
- P. Cartier, Harmonic analysis on trees, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 419–424. MR 0338272
- Yves Derriennic, Marche aléatoire sur le groupe libre et frontière de Martin, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), no. 4, 261–276 (French). MR 388545, DOI 10.1007/BF00535840
- Jozef Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), no. 2, 787–794. MR 743744, DOI 10.1090/S0002-9947-1984-0743744-X
- J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric inequality, From local times to global geometry, control and physics (Coventry, 1984/85) Pitman Res. Notes Math. Ser., vol. 150, Longman Sci. Tech., Harlow, 1986, pp. 68–74. MR 894523 E. B. Dynkin and M. B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl. 2 (1961), 399-402.
- William Feller, Boundaries induced by non-negative matrices, Trans. Amer. Math. Soc. 83 (1956), 19–54. MR 90927, DOI 10.1090/S0002-9947-1956-0090927-3
- Alessandro Figà-Talamanca and Massimo A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1983. MR 710827
- Peter Gerl, Random walks on graphs with a strong isoperimetric property, J. Theoret. Probab. 1 (1988), no. 2, 171–187. MR 938257, DOI 10.1007/BF01046933
- David Heath, Functions possessing restricted mean value properties, Proc. Amer. Math. Soc. 41 (1973), 588–595. MR 333213, DOI 10.1090/S0002-9939-1973-0333213-1
- A. A. Ivanov, Bounding the diameter of a distance-regular graph, Dokl. Akad. Nauk SSSR 271 (1983), no. 4, 789–792 (Russian). MR 719819
- Oliver D. Kellogg, Converses of Gauss’ theorem on the arithmetic mean, Trans. Amer. Math. Soc. 36 (1934), no. 2, 227–242. MR 1501739, DOI 10.1090/S0002-9947-1934-1501739-0
- John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, 2nd ed., Graduate Texts in Mathematics, No. 40, Springer-Verlag, New York-Heidelberg-Berlin, 1976. With a chapter on Markov random fields, by David Griffeath. MR 0407981
- Bojan Mohar, Isoperimetric inequalities, growth, and the spectrum of graphs, Linear Algebra Appl. 103 (1988), 119–131. MR 943998, DOI 10.1016/0024-3795(88)90224-8
- Massimo A. Picardello and Wolfgang Woess, Martin boundaries of random walks: ends of trees and groups, Trans. Amer. Math. Soc. 302 (1987), no. 1, 185–205. MR 887505, DOI 10.1090/S0002-9947-1987-0887505-2 —, Harmonic functions and ends of graphs, Proc. Edinburgh Math. Soc. (in print).
- William A. Veech, A zero-one law for a class of random walks and a converse to Gauss’ mean value theorem, Ann. of Math. (2) 97 (1973), 189–216. MR 310269, DOI 10.2307/1970845
- William A. Veech, A converse to the mean value theorem for harmonic functions, Amer. J. Math. 97 (1975), no. 4, 1007–1027. MR 393521, DOI 10.2307/2373685
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 209-225
- MSC: Primary 31C20; Secondary 31C35, 60J15, 60J50
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974775-7
- MathSciNet review: 974775