Torsion points of generic formal groups
HTML articles powered by AMS MathViewer
- by Michael Rosen and Karl Zimmermann
- Trans. Amer. Math. Soc. 311 (1989), 241-253
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974776-9
- PDF | Request permission
Abstract:
Let $F$ be a generic formal group of height $h$ defined over $A = {{\mathbf {Z}}_p}[[{t_1}, \ldots ,{t_{h - 1}}]]$. Let $K$ be the quotient field of $A$. We show the natural map ${\rho _n}:{\text {Gal}}(K(\operatorname {ker} [{p^n}])/K) \to G{L_h}({\mathbf {Z}}/{p^n}{\mathbf {Z}})$ isomorphisms for all $n \ge 1$ provided $p \ne 2$.References
- Emil Artin, Algebraic numbers and algebraic functions, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0237460
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081
- Jonathan Lubin, Canonical subgroups of formal groups, Trans. Amer. Math. Soc. 251 (1979), 103–127. MR 531971, DOI 10.1090/S0002-9947-1979-0531971-4
- Jonathan Lubin, The local Kronecker-Weber theorem, Trans. Amer. Math. Soc. 267 (1981), no. 1, 133–138. MR 621978, DOI 10.1090/S0002-9947-1981-0621978-X
- Jonathan Lubin and John Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49–59. MR 238854
- Michel Raynaud, Schémas en groupes de type $(p,\dots , p)$, Bull. Soc. Math. France 102 (1974), 241–280 (French). MR 419467
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 0263823 —, Sur les group de Galois attaché aux groups $p$-divisible, Proc. Conf. on Local Fields, Driebergen, Springer-Verlag, Berlin and New York, 1967, pp. 113-131.
- Karl Zimmermann, Points of order $p$ of generic formal groups, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 17–32 (English, with French summary). MR 978240
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 241-253
- MSC: Primary 14L05; Secondary 11S31
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974776-9
- MathSciNet review: 974776