Primary cycles on the circle
HTML articles powered by AMS MathViewer
- by Louis Block, Ethan M. Coven, Leo Jonker and Michał Misiurewicz
- Trans. Amer. Math. Soc. 311 (1989), 323-335
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974779-4
- PDF | Request permission
Abstract:
We consider cycles, i.e., periodic orbits, of continuous degree one maps of the circle. One cycle forces another if every such map that has a cycle which looks like the first also has a cycle which looks like the second. We characterize primary cycles, i.e., those which force no other cycle of the same period.References
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Periodic orbits of maps of $Y$, Trans. Amer. Math. Soc. 313 (1989), no. 2, 475–538. MR 958882, DOI 10.1090/S0002-9947-1989-0958882-0
- Lluís Alsedà, Jaume Llibre, MichałMisiurewicz, and Carles Simó, Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergodic Theory Dynam. Systems 5 (1985), no. 4, 501–517. MR 829854, DOI 10.1017/S0143385700003126
- Lluís Alsedà, Jaume Llibre, and Rafel Serra, Minimal periodic orbits for continuous maps of the interval, Trans. Amer. Math. Soc. 286 (1984), no. 2, 595–627. MR 760976, DOI 10.1090/S0002-9947-1984-0760976-5
- Stewart Baldwin, Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions, Discrete Math. 67 (1987), no. 2, 111–127. MR 913178, DOI 10.1016/0012-365X(87)90021-5
- Chris Bernhardt, Simple permutations with order a power of two, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 179–186. MR 766099, DOI 10.1017/S0143385700002376
- Louis Block, Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391–398. MR 539925, DOI 10.1090/S0002-9947-1979-0539925-9
- L. S. Block and W. A. Coppel, Stratification of continuous maps of an interval, Trans. Amer. Math. Soc. 297 (1986), no. 2, 587–604. MR 854086, DOI 10.1090/S0002-9947-1986-0854086-8
- Alain Chenciner, Jean-Marc Gambaudo, and Charles Tresser, Une remarque sur la structure des endomorphismes de degré $1$ du cercle, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 5, 145–148 (French, with English summary). MR 756312
- W. A. Coppel, Šarkovs′kiĭ-minimal orbits, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 3, 397–408. MR 698345, DOI 10.1017/S0305004100060722 C.-W. Ho, On the structure of minimum orbits of periodic points for maps of the real line, preprint, Southern Illinois Univ., Edwardsville, 1982.
- Jaume Llibre, Minimal periodic orbits of continuous mappings of the circle, Proc. Amer. Math. Soc. 83 (1981), no. 3, 625–628. MR 627708, DOI 10.1090/S0002-9939-1981-0627708-5
- R. S. MacKay and C. Tresser, Badly ordered orbits of circle maps, Math. Proc. Cambridge Philos. Soc. 96 (1984), no. 3, 447–451. MR 757837, DOI 10.1017/S0305004100062368
- MichałMisiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 221–227 (1983). MR 693977, DOI 10.1017/s014338570000153x
- MichałMisiurewicz, Twist sets for maps of the circle, Ergodic Theory Dynam. Systems 4 (1984), no. 3, 391–404. MR 776876, DOI 10.1017/S0143385700002534
- MichałMisiurewicz, Rotation intervals for a class of maps of the real line into itself, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 117–132. MR 837979, DOI 10.1017/S0143385700003321
- S. Newhouse, J. Palis, and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5–71. MR 699057
- P. Štefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), no. 3, 237–248. MR 445556
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 323-335
- MSC: Primary 58F08; Secondary 26A18, 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974779-4
- MathSciNet review: 974779