## Specializations of finitely generated subgroups of abelian varieties

HTML articles powered by AMS MathViewer

- by D. W. Masser
- Trans. Amer. Math. Soc.
**311**(1989), 413-424 - DOI: https://doi.org/10.1090/S0002-9947-1989-0974783-6
- PDF | Request permission

## Abstract:

Given a generic Mordell-Weil group over a function field, we can specialize it down to a number field. It has been known for some time that the resulting homomorphism of groups is injective "infinitely often". We prove that this is in fact true "almost always", in a sense that is quantitatively nearly best possible.## References

- Allen Altman,
*The size function of abelian varieties*, Trans. Amer. Math. Soc.**164**(1972), 153–161. MR**292843**, DOI 10.1090/S0002-9947-1972-0292843-X - M. Fried,
*Constructions arising from Néron’s high rank curves*, Trans. Amer. Math. Soc.**281**(1984), no. 2, 615–631. MR**722765**, DOI 10.1090/S0002-9947-1984-0722765-7 - D. W. Masser,
*Small values of heights on families of abelian varieties*, Diophantine approximation and transcendence theory (Bonn, 1985) Lecture Notes in Math., vol. 1290, Springer, Berlin, 1987, pp. 109–148. MR**927559**, DOI 10.1007/BFb0078706
—, - D. W. Masser and G. Wüstholz,
*Zero estimates on group varieties. I*, Invent. Math.**64**(1981), no. 3, 489–516. MR**632987**, DOI 10.1007/BF01389279 - D. W. Masser and G. Wüstholz,
*Fields of large transcendence degree generated by values of elliptic functions*, Invent. Math.**72**(1983), no. 3, 407–464. MR**704399**, DOI 10.1007/BF01398396 - Kumiko Nakata,
*On some elliptic curves defined over $\textbf {Q}$ of free rank $\geq 9$*, Manuscripta Math.**29**(1979), no. 2-4, 183–194. MR**545040**, DOI 10.1007/BF01303626 - André Néron,
*Problèmes arithmétiques et géométriques rattachés à la notion de rang d’une courbe algébrique dans un corps*, Bull. Soc. Math. France**80**(1952), 101–166 (French). MR**56951** - Patrice Philippon,
*Critères pour l’indépendance algébrique*, Inst. Hautes Études Sci. Publ. Math.**64**(1986), 5–52 (French). MR**876159**
A. J. van der Poorten and H.-P. Schlickewei, - Wolfgang M. Schmidt,
*Equations over finite fields. An elementary approach*, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin-New York, 1976. MR**0429733** - Joseph H. Silverman,
*Heights and the specialization map for families of abelian varieties*, J. Reine Angew. Math.**342**(1983), 197–211. MR**703488**, DOI 10.1515/crll.1983.342.197 - Joseph H. Silverman,
*Arithmetic distance functions and height functions in Diophantine geometry*, Math. Ann.**279**(1987), no. 2, 193–216. MR**919501**, DOI 10.1007/BF01461718
J. Top,

*Linear relations on algebraic groups*, Proc. 1986 Durham Symposium on Transcendence. (to appear).

*The growth conditions for recurrence sequences*, Macquarie Mathematics Report 82-0041, 1982.

*Néron’s proof of the existence of elliptic curves over*${\mathbf {Q}}$

*with rank at least*11, Univ. of Utrecht Preprint No. 476, 1987.

## Bibliographic Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**311**(1989), 413-424 - MSC: Primary 11G10; Secondary 11G05, 11J99, 14K15
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974783-6
- MathSciNet review: 974783