Factorization of diffusions on fibre bundles
HTML articles powered by AMS MathViewer
- by Ming Liao
- Trans. Amer. Math. Soc. 311 (1989), 813-827
- DOI: https://doi.org/10.1090/S0002-9947-1989-0929666-4
- PDF | Request permission
Abstract:
Let $\pi :M \to N$ be a fibre bundle with a $G$-structure and a connection. A $G$-invariant operator $A$ on the standard fibre $F$ is "shifted" to an operator ${A^{\ast }}$ on $M$ and a semielliptic operator $B$ on $N$ is "lifted" to an operator $\tilde B$ on $M$. Let ${X_t}$ be an $A$-diffusion on $F$, let ${Y_t}$ be a $B$-diffusion on $N$ which is independent of ${X_t}$ and let ${\Psi _t}$ be its horizontal lift in the associated principal bundle. Then ${Z_t} = {\Psi _t}({X_t})$ is a diffusion on $M$ with generator ${A^{\ast }} + \tilde B$. Conversely, such a factorization is possible only if the fibre bundle has a proper $G$-structure. In the case of a Riemannian submersion, $X,\;Y$ and $Z$ can be taken to be Brownian motions and the existence of a $G$-structure then means that the fibres are totally geodesic.References
- R. Azencott, Diffusions sur les variétés. Généralités, Astérisque 84-85 (1981), 17-32.
- Lionel Bérard-Bergery and Jean-Pierre Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois J. Math. 26 (1982), no. 2, 181–200. MR 650387
- K. D. Elworthy, Stochastic differential equations on manifolds, London Mathematical Society Lecture Note Series, vol. 70, Cambridge University Press, Cambridge-New York, 1982. MR 675100
- K. D. Elworthy and W. S. Kendall, Factorization of harmonic maps and Brownian motions, From local times to global geometry, control and physics (Coventry, 1984/85) Pitman Res. Notes Math. Ser., vol. 150, Longman Sci. Tech., Harlow, 1986, pp. 75–83. MR 894524
- Robert Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960), 236–242. MR 112151, DOI 10.1090/S0002-9939-1960-0112151-4
- Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
- H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol. 1097, Springer, Berlin, 1984, pp. 143–303. MR 876080, DOI 10.1007/BFb0099433
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
- Jaak Vilms, Totally geodesic maps, J. Differential Geometry 4 (1970), 73–79. MR 262984
- Bill Watson, Manifold maps commuting with the Laplacian, J. Differential Geometry 8 (1973), 85–94. MR 365419
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 813-827
- MSC: Primary 58G32; Secondary 53C10
- DOI: https://doi.org/10.1090/S0002-9947-1989-0929666-4
- MathSciNet review: 929666