Invariants of graphs in three-space
HTML articles powered by AMS MathViewer
- by Louis H. Kauffman
- Trans. Amer. Math. Soc. 311 (1989), 697-710
- DOI: https://doi.org/10.1090/S0002-9947-1989-0946218-0
- PDF | Request permission
Abstract:
By associating a collection of knots and links to a graph in three-dimensional space, we obtain computable invariants of the embedding type of the graph. Two types of isotopy are considered: topological and rigid-vertex isotopy. Rigid-vertex graphs are a category mixing topological flexibility with mechanical rigidity. Both categories constitute steps toward models for chemical and biological networks. We discuss chirality in both rigid and topological contexts.References
- J. Boyle, Embedings of $2$-dimensional cell complexes in ${S^3}$ determined by their $1$-skeletons, (preprint).
- J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983), no. 4, 445–453. MR 722061, DOI 10.1002/jgt.3190070410
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- W. Graeub, Die semilinearen Abbildungen, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1950 (1950), 205–272 (German). MR 0042709
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Louis H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), no. 3, 195–242. MR 935433, DOI 10.2307/2323625 —, On knots, Ann. of Math. Studies, no. 115. Princeton Univ. Press, 1987.
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. MR 958895, DOI 10.1090/S0002-9947-1990-0958895-7
- Louis H. Kauffman and Pierre Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992), no. 1, 59–104. MR 1155094, DOI 10.1142/S0218216592000069
- Kenneth C. Millett, Stereotopological indices for a family of chemical graphs, J. Comput. Chem. 8 (1987), no. 4, 536–548. MR 892422, DOI 10.1002/jcc.540080434
- Robert D. Brandt, W. B. R. Lickorish, and Kenneth C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), no. 3, 563–573. MR 837528, DOI 10.1007/BF01388747
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9 K. Reidemeister, Knotentheorie, Ergebnisse der Matematik und ihrer Grenzgebiete, (Alte Folge), Band 1, Heft 1, Springer 1932; reprint, Springer-Verlag, 1974.
- K. Reidemeister, Knot theory, BCS Associates, Moscow, Idaho, 1983. Translated from the German by Leo F. Boron, Charles O. Christenson and Bryan A. Smith. MR 717222
- Jonathan Simon, Topological chirality of certain molecules, Topology 25 (1986), no. 2, 229–235. MR 837623, DOI 10.1016/0040-9383(86)90041-8
- Jonathan Simon, Molecular graphs as topological objects in space, J. Comput. Chem. 8 (1987), no. 5, 718–726. MR 891813, DOI 10.1002/jcc.540080516
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6 K. Wolcott, The knotting of theta curves and other graphs in ${S^3}$, Thesis, Univ. of Iowa, 1985.
- Shuji Yamada, An invariant of spatial graphs, J. Graph Theory 13 (1989), no. 5, 537–551. MR 1016274, DOI 10.1002/jgt.3190130503
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 697-710
- MSC: Primary 57M25; Secondary 05C10
- DOI: https://doi.org/10.1090/S0002-9947-1989-0946218-0
- MathSciNet review: 946218