Nonlinear second order elliptic partial differential equations at resonance
Authors:
R. Iannacci, M. N. Nkashama and J. R. Ward
Journal:
Trans. Amer. Math. Soc. 311 (1989), 711-726
MSC:
Primary 35J65
DOI:
https://doi.org/10.1090/S0002-9947-1989-0951886-3
MathSciNet review:
951886
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we study the solvability of boundary value problems for semilinear second order elliptic partial differential equations of resonance type in which the nonlinear perturbation is not (necessarily) required to satisfy the Landesman-Lazer condition or the monotonicity assumption. The nonlinearity may be unbounded and some crossing of eigenvalues is allowed. Selfadjoint and nonselfadjoint resonance problems are considered.
- Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
- Shair Ahmad, Nonselfadjoint resonance problems with unbounded perturbations, Nonlinear Anal. 10 (1986), no. 2, 147–156. MR 825213, DOI https://doi.org/10.1016/0362-546X%2886%2990042-8
- Herbert Amann and Michael G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J. 27 (1978), no. 5, 779–790. MR 503713, DOI https://doi.org/10.1512/iumj.1978.27.27050
- Henri Berestycki and Djairo Guedes de Figueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1981), no. 1, 91–120. MR 597753, DOI https://doi.org/10.1080/03605308108820172
- Jean-Michel Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A333–A336 (French). MR 223711
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 2, 225–326. MR 513090
- L. Cesari and R. Kannan, Qualitative study of a class of nonlinear boundary value problems at resonance, J. Differential Equations 56 (1985), no. 1, 63–81. MR 772121, DOI https://doi.org/10.1016/0022-0396%2885%2990100-7
- Lamberto Cesari and Patrizia Pucci, Existence theorems for nonselfadjoint semilinear elliptic boundary value problems, Nonlinear Anal. 9 (1985), no. 11, 1227–1241. MR 813655, DOI https://doi.org/10.1016/0362-546X%2885%2990032-X
- E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 4, 283–300. MR 499709, DOI https://doi.org/10.1017/S0308210500019648
- Djairo G. de Figueiredo and Jean-Pierre Gossez, Conditions de non-résonance pour certains problèmes elliptiques semi-linéaires, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 15, 543–545 (French, with English summary). MR 845644
- Djairo Guedes de Figueiredo and Wei Ming Ni, Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition, Nonlinear Anal. 3 (1979), no. 5, 629–634. MR 541873, DOI https://doi.org/10.1016/0362-546X%2879%2990091-9
- Pavel Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth, J. Math. Anal. Appl. 127 (1987), no. 2, 435–442. MR 915069, DOI https://doi.org/10.1016/0022-247X%2887%2990121-1
- Svatopluk Fučík, Surjectivity of operators involving linear noninvertible part and nonlinear compact perturbation, Funkcial. Ekvac. 17 (1974), 73–83. MR 365255
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- José Valdo A. Gonçalves, On bounded nonlinear perturbations of an elliptic equation at resonance, Nonlinear Anal. 5 (1981), no. 1, 57–60. MR 597281, DOI https://doi.org/10.1016/0362-546X%2881%2990070-5
- Chaitan P. Gupta, Perturbations of second order linear elliptic problems by unbounded nonlinearities, Nonlinear Anal. 6 (1982), no. 9, 919–933. MR 677617, DOI https://doi.org/10.1016/0362-546X%2882%2990011-6
- Chaitan P. Gupta, Solvability of a boundary value problem with the nonlinearity satisfying a sign condition, J. Math. Anal. Appl. 129 (1988), no. 2, 482–492. MR 924305, DOI https://doi.org/10.1016/0022-247X%2888%2990266-1
- R. Iannacci and M. N. Nkashama, Unbounded perturbations of forced second order ordinary differential equations at resonance, J. Differential Equations 69 (1987), no. 3, 289–309. MR 903389, DOI https://doi.org/10.1016/0022-0396%2887%2990121-5
- R. Iannacci and M. N. Nkashama, Nonlinear boundary value problems at resonance, Nonlinear Anal. 11 (1987), no. 4, 455–473. MR 887655, DOI https://doi.org/10.1016/0362-546X%2887%2990064-2
- R. Iannacci and M. N. Nkashama, Nonlinear two-point boundary value problems at resonance without Landesman-Lazer condition, Proc. Amer. Math. Soc. 106 (1989), no. 4, 943–952. MR 1004633, DOI https://doi.org/10.1090/S0002-9939-1989-1004633-9
- R. Kannan, J. J. Nieto, and M. B. Ray, A class of nonlinear boundary value problems without Landesman-Lazer condition, J. Math. Anal. Appl. 105 (1985), no. 1, 1–11. MR 773569, DOI https://doi.org/10.1016/0022-247X%2885%2990093-9
- M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation 1950 (1950), no. 26, 128. MR 0038008
- J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 40, American Mathematical Society, Providence, R.I., 1979. Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9–15, 1977. MR 525202
- Jean Mawhin, Nonresonance conditions of nonuniform type in nonlinear boundary value problems, Dynamical systems, II (Gainesville, Fla., 1981) Academic Press, New York, 1982, pp. 255–276. MR 703699
- Jean Mawhin, A Neumann boundary value problem with jumping monotone nonlinearity, Delft Progr. Rep. 10 (1985), no. 1, 44–52. MR 787670
- J. Mawhin, J. R. Ward, and M. Willem, Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem, Proc. Amer. Math. Soc. 93 (1985), no. 4, 667–674. MR 776200, DOI https://doi.org/10.1090/S0002-9939-1985-0776200-X
- J. Mawhin, J. R. Ward Jr., and M. Willem, Variational methods and semilinear elliptic equations, Arch. Rational Mech. Anal. 95 (1986), no. 3, 269–277. MR 853968, DOI https://doi.org/10.1007/BF00251362
- J. Mawhin and M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 6, 431–453 (English, with French summary). MR 870864
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825
- Renate Schaaf and Klaus Schmitt, A class of nonlinear Sturm-Liouville problems with infinitely many solutions, Trans. Amer. Math. Soc. 306 (1988), no. 2, 853–859. MR 933322, DOI https://doi.org/10.1090/S0002-9947-1988-0933322-5
- Martin Schechter, Jack Shapiro, and Morris Snow, Solution of the nonlinear problem $Au=N(u)$ in a Banach space, Trans. Amer. Math. Soc. 241 (1978), 69–78. MR 492290, DOI https://doi.org/10.1090/S0002-9947-1978-0492290-7 J. R. Ward. Jr., A note on the Dirichlet problem for some semi-linear elliptic equations, (preprint 1986).
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65
Retrieve articles in all journals with MSC: 35J65
Additional Information
Keywords:
Boundary value problems,
second order elliptic partial differential equations,
(double) resonance,
Leray-Schauder continuation method,
topological degree
Article copyright:
© Copyright 1989
American Mathematical Society