Characterization of nonlinear semigroups associated with semilinear evolution equations
Authors:
Shinnosuke Oharu and Tadayasu Takahashi
Journal:
Trans. Amer. Math. Soc. 311 (1989), 593-619
MSC:
Primary 47H20; Secondary 58D25
DOI:
https://doi.org/10.1090/S0002-9947-1989-0978369-9
MathSciNet review:
978369
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Nonlinear continuous perturbations of linear dissipative operators are considered from the point of view of the nonlinear semigroup theory. A general class of nonlinear perturbations of linear contraction semigroups in a Banach space $X$ is introduced by means of a lower semicontinuous convex functional $[{\text {unk}}]:X \to [0,\infty ]$ and two notions of semilinear infinitesimal generators of the associated nonlinear semigroups are formulated. Four types of necessary and sufficient conditions are given for a semilinear operator $A + B$ of the class to be the infinitesimal generator of a nonlinear semigroup $\{ S(t):t \geqslant 0\}$ on the domain $C$ of $B$ such that for $x \in C$ the $C$-valued function $S( \cdot )x$ on $[0,\infty )$ provides a unique mild solution of the semilinear evolution equation $u’(t) = (A + B)u(t)$ satisfying a growth condition for the function $[{\text {unk]}}(u( \cdot ))$. It turns out that various types of characterizations of nonlinear semigroups associated with semilinear evolution equations are obtained and, in particular, a semilinear version of the Hille-Yosida theorem is established in a considerably general form.
- J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc. 63 (1977), no. 2, 370–373. MR 442748, DOI https://doi.org/10.1090/S0002-9939-1977-0442748-6
- M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 287357, DOI https://doi.org/10.2307/2373376
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
- Toshiyuki Iwamiya, Global existence of mild solutions to semilinear differential equations in Banach spaces, Hiroshima Math. J. 16 (1986), no. 3, 499–530. MR 867577
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Yoshikazu Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), no. 4, 640–665. MR 399974, DOI https://doi.org/10.2969/jmsj/02740640
- Kazuo Kobayasi, Yoshikazu Kobayashi, and Shinnosuke Oharu, Nonlinear evolution operators in Banach spaces, Osaka J. Math. 21 (1984), no. 2, 281–310. MR 752464 V. Lakshmikantham and S. Leela, Differential and integral inequalities, Academic Press, New York, 1969.
- Robert H. Martin Jr., Invariant sets for perturbed semigroups of linear operators, Ann. Mat. Pura Appl. (4) 105 (1975), 221–239. MR 390414, DOI https://doi.org/10.1007/BF02414931
- Robert H. Martin Jr., Nonlinear operators and differential equations in Banach spaces, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. Pure and Applied Mathematics. MR 0492671
- Shinnosuke Oharu and Tadayasu Takahashi, Locally Lipschitz continuous perturbations of linear dissipative operators and nonlinear semigroups, Proc. Amer. Math. Soc. 100 (1987), no. 1, 187–194. MR 883426, DOI https://doi.org/10.1090/S0002-9939-1987-0883426-5
- Nicolae H. Pavel, Nonlinear evolution equations governed by $f$-quasidissipative operators, Nonlinear Anal. 5 (1981), no. 5, 449–468. MR 613054, DOI https://doi.org/10.1016/0362-546X%2881%2990094-8
- Nicolae H. Pavel, Semilinear equations with dissipative time-dependent domain perturbations, Israel J. Math. 46 (1983), no. 1-2, 103–122. MR 727025, DOI https://doi.org/10.1007/BF02760625 ---, Differential equations, flow invariance and applications, Pitman, London, 1984.
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
- G. F. Webb, Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Functional Analysis 10 (1972), 191–203. MR 0361965, DOI https://doi.org/10.1016/0022-1236%2872%2990048-1
- Kôsaku Yosida, Functional analysis, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York Inc., New York, 1968. MR 0239384
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H20, 58D25
Retrieve articles in all journals with MSC: 47H20, 58D25
Additional Information
Keywords:
Nonlinear perturbations of linear operators,
semilinear evolution equation,
mild solution,
nonlinear semigroup,
full infinitesimal generator,
range condition,
local quasi-dissipativity
Article copyright:
© Copyright 1989
American Mathematical Society