## Characterization of nonlinear semigroups associated with semilinear evolution equations

HTML articles powered by AMS MathViewer

- by Shinnosuke Oharu and Tadayasu Takahashi PDF
- Trans. Amer. Math. Soc.
**311**(1989), 593-619 Request permission

## Abstract:

Nonlinear continuous perturbations of linear dissipative operators are considered from the point of view of the nonlinear semigroup theory. A general class of nonlinear perturbations of linear contraction semigroups in a Banach space $X$ is introduced by means of a lower semicontinuous convex functional $[{\text {unk}}]:X \to [0,\infty ]$ and two notions of semilinear infinitesimal generators of the associated nonlinear semigroups are formulated. Four types of necessary and sufficient conditions are given for a semilinear operator $A + B$ of the class to be the infinitesimal generator of a nonlinear semigroup $\{ S(t):t \geqslant 0\}$ on the domain $C$ of $B$ such that for $x \in C$ the $C$-valued function $S( \cdot )x$ on $[0,\infty )$ provides a unique mild solution of the semilinear evolution equation $u’(t) = (A + B)u(t)$ satisfying a growth condition for the function $[{\text {unk]}}(u( \cdot ))$. It turns out that various types of characterizations of nonlinear semigroups associated with semilinear evolution equations are obtained and, in particular, a semilinear version of the Hille-Yosida theorem is established in a considerably general form.## References

- J. M. Ball,
*Strongly continuous semigroups, weak solutions, and the variation of constants formula*, Proc. Amer. Math. Soc.**63**(1977), no. 2, 370–373. MR**442748**, DOI 10.1090/S0002-9939-1977-0442748-6 - M. G. Crandall and T. M. Liggett,
*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**287357**, DOI 10.2307/2373376 - Einar Hille and Ralph S. Phillips,
*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR**0089373** - Toshiyuki Iwamiya,
*Global existence of mild solutions to semilinear differential equations in Banach spaces*, Hiroshima Math. J.**16**(1986), no. 3, 499–530. MR**867577** - Tosio Kato,
*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473** - Yoshikazu Kobayashi,
*Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups*, J. Math. Soc. Japan**27**(1975), no. 4, 640–665. MR**399974**, DOI 10.2969/jmsj/02740640 - Kazuo Kobayasi, Yoshikazu Kobayashi, and Shinnosuke Oharu,
*Nonlinear evolution operators in Banach spaces*, Osaka J. Math.**21**(1984), no. 2, 281–310. MR**752464**
V. Lakshmikantham and S. Leela, - Robert H. Martin Jr.,
*Invariant sets for perturbed semigroups of linear operators*, Ann. Mat. Pura Appl. (4)**105**(1975), 221–239. MR**390414**, DOI 10.1007/BF02414931 - Robert H. Martin Jr.,
*Nonlinear operators and differential equations in Banach spaces*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR**0492671** - Shinnosuke Oharu and Tadayasu Takahashi,
*Locally Lipschitz continuous perturbations of linear dissipative operators and nonlinear semigroups*, Proc. Amer. Math. Soc.**100**(1987), no. 1, 187–194. MR**883426**, DOI 10.1090/S0002-9939-1987-0883426-5 - Nicolae H. Pavel,
*Nonlinear evolution equations governed by $f$-quasidissipative operators*, Nonlinear Anal.**5**(1981), no. 5, 449–468. MR**613054**, DOI 10.1016/0362-546X(81)90094-8 - Nicolae H. Pavel,
*Semilinear equations with dissipative time-dependent domain perturbations*, Israel J. Math.**46**(1983), no. 1-2, 103–122. MR**727025**, DOI 10.1007/BF02760625
—, - A. Pazy,
*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486**, DOI 10.1007/978-1-4612-5561-1 - G. F. Webb,
*Continuous nonlinear perturbations of linear accretive operators in Banach spaces*, J. Functional Analysis**10**(1972), 191–203. MR**0361965**, DOI 10.1016/0022-1236(72)90048-1 - Kôsaku Yosida,
*Functional analysis*, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York, Inc., New York, 1968. MR**0239384**

*Differential and integral inequalities*, Academic Press, New York, 1969.

*Differential equations, flow invariance and applications*, Pitman, London, 1984.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**311**(1989), 593-619 - MSC: Primary 47H20; Secondary 58D25
- DOI: https://doi.org/10.1090/S0002-9947-1989-0978369-9
- MathSciNet review: 978369