Infix congruences on a free monoid
HTML articles powered by AMS MathViewer
- by C. M. Reis
- Trans. Amer. Math. Soc. 311 (1989), 727-737
- DOI: https://doi.org/10.1090/S0002-9947-1989-0978373-0
- PDF | Request permission
Abstract:
A congruence $\rho$ on a free monoid ${X^{\ast }}$ is said to be infix if each class $C$ of $\rho$ satisfies $u \in C$ and $xuy \in C$ imply $xy = 1$. The main purpose of this paper is a characterization of commutative maximal infix congruences. These turn out to be congruences induced by homomorphisms $\tau$ from ${X^{\ast }}$ to ${{\mathbf {N}}^0}$, the monoid of nonnegative integers under addition, with ${\tau ^{ - 1}}(0) = 1$.References
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 0530382 Y. Q. Guo, H. J. Shyr and G. Thierrin, $f$-disjunctive languages, Internat. J. Comput. Math. 18 (1986), 219-237.
- Leonard H. Haines, On free monoids partially ordered by embedding, J. Combinatorial Theory 6 (1969), 94–98. MR 240016
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578
- Gérard Lallement, Semigroups and combinatorial applications, Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 530552
- C. M. Reis, A note on $F$-disjunctive languages, Semigroup Forum 36 (1987), no. 2, 159–165. MR 911052, DOI 10.1007/BF02575012
- H. J. Shyr and G. Thierrin, Hypercodes, Information and Control 24 (1974), 45–54. MR 345712
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 727-737
- MSC: Primary 20M05
- DOI: https://doi.org/10.1090/S0002-9947-1989-0978373-0
- MathSciNet review: 978373