Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Infix congruences on a free monoid
HTML articles powered by AMS MathViewer

by C. M. Reis
Trans. Amer. Math. Soc. 311 (1989), 727-737
DOI: https://doi.org/10.1090/S0002-9947-1989-0978373-0

Abstract:

A congruence $\rho$ on a free monoid ${X^{\ast }}$ is said to be infix if each class $C$ of $\rho$ satisfies $u \in C$ and $xuy \in C$ imply $xy = 1$. The main purpose of this paper is a characterization of commutative maximal infix congruences. These turn out to be congruences induced by homomorphisms $\tau$ from ${X^{\ast }}$ to ${{\mathbf {N}}^0}$, the monoid of nonnegative integers under addition, with ${\tau ^{ - 1}}(0) = 1$.
References
  • Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 0530382
  • Y. Q. Guo, H. J. Shyr and G. Thierrin, $f$-disjunctive languages, Internat. J. Comput. Math. 18 (1986), 219-237.
  • Leonard H. Haines, On free monoids partially ordered by embedding, J. Combinatorial Theory 6 (1969), 94–98. MR 240016
  • J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578
  • Gérard Lallement, Semigroups and combinatorial applications, Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 530552
  • C. M. Reis, A note on $F$-disjunctive languages, Semigroup Forum 36 (1987), no. 2, 159–165. MR 911052, DOI 10.1007/BF02575012
  • H. J. Shyr and G. Thierrin, Hypercodes, Information and Control 24 (1974), 45–54. MR 345712
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 20M05
  • Retrieve articles in all journals with MSC: 20M05
Bibliographic Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 311 (1989), 727-737
  • MSC: Primary 20M05
  • DOI: https://doi.org/10.1090/S0002-9947-1989-0978373-0
  • MathSciNet review: 978373