Determinacy of sufficiently differentiable maps
HTML articles powered by AMS MathViewer
- by Alan M. Selby
- Trans. Amer. Math. Soc. 312 (1989), 85-113
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937251-3
- PDF | Request permission
Abstract:
Variants of the algebraic conditions of Mather are shown to be sufficient for the $k$-determinacy of ${C^u}$ maps with respect to $j$-flat, contact (or right) ${C^r}$ equivalence relations where $u - k \leq r \leq u - k + j + 1$ and $0 \leq j < k \leq u$. The required changes of coordinates and matrix-valued functions are constructed from the variation of coefficients in polynomials. The main result follows from a finite-dimensional, polynomial pertubation argument which employs a parameter-dependent polynomial representation of functions based on Taylorâs formula. For $r > k$, the algebraic conditions are seen to be necessary.References
- Ralph Abraham and Joel Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR 0240836
- V u Trá»ng Tuáș„n and DĂĄng DĂŹnh Ăng, A representation theorem for differentiable functions, Proc. Amer. Math. Soc. 75 (1979), no. 2, 343â350. MR 532164, DOI 10.1090/S0002-9939-1979-0532164-2
- V. I. ArnolâČd, Singularity theory, London Mathematical Society Lecture Note Series, vol. 53, Cambridge University Press, Cambridge-New York, 1981. Selected papers; Translated from the Russian; With an introduction by C. T. C. Wall. MR 631683, DOI 10.1017/CBO9780511662713
- V. I. Bakhtin, Topological equivalence of germs of functions, Mat. Zametki 35 (1984), no. 4, 579â588 (Russian). MR 744519
- Robert G. Bartle, Singular points of functional equations, Trans. Amer. Math. Soc. 75 (1953), 366â384. MR 58859, DOI 10.1090/S0002-9947-1953-0058859-1
- G. R. BelickiÄ, Equivalence and normal forms of germs of smooth mappings, Uspekhi Mat. Nauk 33 (1978), no. 1(199), 95â155, 263 (Russian). MR 490708
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
- Jacek Bochnak and Wojciech Kucharz, Sur les germes dâapplications differentiables Ă singularitĂ©s isolĂ©es, Trans. Amer. Math. Soc. 252 (1979), 115â131 (French). MR 534113, DOI 10.1090/S0002-9947-1979-0534113-4
- J. W. Bruce, On the degree of determinacy of smooth functions, Bull. London Math. Soc. 13 (1981), no. 1, 55â58. MR 599643, DOI 10.1112/blms/13.1.55
- J. W. Bruce, T. Gaffney, and A. A. du Plessis, On left equivalence of map germs, Bull. London Math. Soc. 16 (1984), no. 3, 303â306. MR 738525, DOI 10.1112/blms/16.3.303
- Th. Bröcker, Differentiable germs and catastrophes, London Mathematical Society Lecture Note Series, No. 17, Cambridge University Press, Cambridge-New York-Melbourne, 1975. Translated from the German, last chapter and bibliography by L. Lander. MR 0494220, DOI 10.1017/CBO9781107325418 M. A. Bruce, A note on ${C^1}$ equivalence, J. Math. Anal. Appl. 121 (1987), 91-95.
- Michael Buchner, Jerrold Marsden, and Stephen Schecter, Applications of the blowing-up construction and algebraic geometry to bifurcation problems, J. Differential Equations 48 (1983), no. 3, 404â433. MR 702428, DOI 10.1016/0022-0396(83)90102-X
- Henri Cartan, Elementary theory of analytic functions of one or several complex variables, Ăditions Scientifiques Hermann, Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0154968
- P. Cragnolini and A. Milani, Topologies of deformations, Boll. Un. Mat. Ital. B (6) 3 (1984), no. 3, 883â893 (Italian, with English summary). MR 774483
- James Damon, The unfolding and determinacy theorems for subgroups of ${\scr A}$ and ${\scr K}$, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 233â254. MR 713063, DOI 10.1090/pspum/040.1/713063 â, The unfolding and determinacy theorems for subgroups of $\mathcal {A}$ and $\mathcal {K}$, Mem. Amer. Math. Soc. No. 306 (1984), 90 pp. â, Topological properties of real simple germs, curves, and the nice dimensions $n > p$, Math. Proc. Cambridge Philos. Soc. 89 (1981), 451-472.
- Michael A. B. Deakin, New proofs of some theorems on infinitely differentiable functions, Bull. Austral. Math. Soc. 17 (1977), no. 2, 161â175. MR 467799, DOI 10.1017/S0004972700010406
- Michael A. B. Deakin, The formal power series approach to elementary catastrophe theory, Papers in algebra, analysis and statistics (Hobart, 1981) Contemp. Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1981, pp. 313â317. MR 655989 â, The formal power series approach to elementary catastrophe theory, Bull. Math. Biol. 40 (1978), 429-450.
- Nicole Desolneux-Moulis, Sufficiency of jets of maps from a Hilbert space to the real line, Global analysis and its applications (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phys., Trieste, 1972) Internat. Atomic Energy Agency, Vienna, 1974, pp. 47â53. MR 0445535
- Takuo Fukuda, Local topological properties of differentiable mappings. I, Invent. Math. 65 (1981/82), no. 2, 227â250. MR 641129, DOI 10.1007/BF01389013
- Terence Gaffney and Andrew du Plessis, More on the determinacy of smooth map-germs, Invent. Math. 66 (1982), no. 1, 137â163. MR 652651, DOI 10.1007/BF01404761
- Jean-Jacques Gervais, On right-left $C^{\infty }$-sufficiency of jets, C. R. Math. Rep. Acad. Sci. Canada 4 (1982), no. 6, 341â346. MR 681190 C. Gibson, G. WirthmĂŒller, A. A. du Plessis, and E. Looijenga, Topological stability of smooth mappings, Lecture Notes in Math., vol. 552, Springer, 1977.
- Georges Glaeser, Fonctions composĂ©es diffĂ©rentiables, Ann. of Math. (2) 77 (1963), 193â209 (French). MR 143058, DOI 10.2307/1970204
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518, DOI 10.1007/978-1-4615-7904-5
- M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math. 32 (1979), no. 1, 21â98. MR 508917, DOI 10.1002/cpa.3160320103
- Ä. P. Gomozov, Equivalence of germs of smooth mappings with respect to transformations of coordinates in the preimage, Studies in the theory of functions of several variables, Yaroslav. Gos. Univ., YaroslavlâČ1980, pp. 54â62 (Russian). MR 712501 â, Versatility theorems for some groups of coordinate transformations, Manifolds of Differentiable Mappings (P. W. Michor, editor), Shiva Math. Series, BirkhĂ€user-Verlag, 1980.
- Lawrence M. Graves, Remarks on singular points of functional equations, Trans. Amer. Math. Soc. 79 (1955), 150â157. MR 68734, DOI 10.1090/S0002-9947-1955-0068734-6
- Jack K. Hale, Ordinary differential equations, Pure and Applied Mathematics, Vol. XXI, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. MR 0419901
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038 E. Hille and R. S. Philips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 21, Amer. Math. Soc., Providence, R. I., 1957.
- Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79â183. MR 388463, DOI 10.1007/BF02392052
- Fumio Ichikawa, On finite determinacy of formal vector fields, Invent. Math. 70 (1982/83), no. 1, 45â52. MR 679772, DOI 10.1007/BF01393197
- Fumio Ichikawa, Generalized splitting theorem for map-germs, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 422â424. MR 732600
- M. C. Irwin, On the smoothness of the composition map, Quart. J. Math. Oxford Ser. (2) 23 (1972), 113â133. MR 305434, DOI 10.1093/qmath/23.2.113
- ShyĆ«ichi Izumiya, Stability of $G$-unfoldings, Hokkaido Math. J. 9 (1980), no. 1, 36â45. MR 563184, DOI 10.14492/hokmj/1381758225
- Nicolaas H. Kuiper, $C^{1}$-equivalence of functions near isolated critical points, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 199â218. MR 0413161
- Tzee Char Kuo, On $C^{0}$-sufficiency of jets of potential functions, Topology 8 (1969), 167â171. MR 238338, DOI 10.1016/0040-9383(69)90007-X â, A complete determination of ${C^0}$-sufficiency in ${J^r}(2,1)$, Invent. Math. 8 (1969b), 226-235.
- Tzee Char Kuo, Some viewpoints on algebraic geometry and singularity theory, Math. Chronicle 11 (1982), no. 1-2, 67â80. MR 677452
- Tzee Char Kuo and Yung Chen Lu, Sufficiency of jets via stratification theory, Invent. Math. 57 (1980), no. 3, 219â226. MR 568934, DOI 10.1007/BF01418927
- DaniĂšle Lefebvre and Marie-ThĂ©rĂšse Pourprix, Determinacy of $C^{\mu }$ map-germs with respect to a $C^{q}$-contact equivalence, J. London Math. Soc. (2) 29 (1984), no. 2, 367â379. MR 744107, DOI 10.1112/jlms/s2-29.2.367
- R. J. Magnus, The transformation of vector-functions, scaling and bifurcation, Trans. Amer. Math. Soc. 286 (1984), no. 2, 689â713. MR 760981, DOI 10.1090/S0002-9947-1984-0760981-9
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
- Jean Martinet, SingularitĂ©s des fonctions et applications diffĂ©rentiables, PontifĂcia Universidade CatĂłlica do Rio de Janeiro, Rio de Janeiro, 1974 (French). MR 0448398
- Jean Martinet, Singularities of smooth functions and maps, London Mathematical Society Lecture Note Series, vol. 58, Cambridge University Press, Cambridge-New York, 1982. Translated from the French by Carl P. Simon. MR 671585
- John N. Mather, Stability of $C^{\infty }$ mappings. I. The division theorem, Ann. of Math. (2) 87 (1968), 89â104. MR 232401, DOI 10.2307/1970595 â, Right equivalence, Unpublished notes, Math. Institute Univ. of Warwick, Warwick, 1969a. â, Stability of ${C^\infty }$ mappings. II: Infinitesimal stability implies stability, Ann. of Math. 89 (1969b), 254-291. â, Stability of ${C^\infty }$ mappings. III: Finitely determined map germs, Publ. Math. Inst. Hautes Ătudes Sci. Publ. Math. 35 (1968), 127-156. â, Stability of ${C^\infty }$ mappings. IV: Classification of stable germs by $R$-algebras, Math. Inst. Hautes Ătudes Sci. Publ. Math. 35 (1969), 223-248.
- John N. Mather, Stability of $C^{\infty }$ mappings. III. Finitely determined mapgerms, Inst. Hautes Ătudes Sci. Publ. Math. 35 (1968), 279â308. MR 275459 â, Stability of ${C^\infty }$ mappings. VI: The nice dimensions, Proc. Liverpool Sympos. I, Lecture Notes in Math., vol. 192, Springer, 1970, pp. 207-253.
- Isao Nakai, Topological types of polynomial map germs, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 227â231. MR 713251, DOI 10.1090/pspum/040.2/713251
- Ali Hasan Nayfeh, Perturbation methods, Pure and Applied Mathematics, John Wiley & Sons, New York-London-Sydney, 1973. MR 0404788
- Edward Nelson, Topics in dynamics. I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1969. MR 0282379
- L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1974. With a chapter by E. Zehnder; Notes by R. A. Artino; Lecture Notes, 1973â1974. MR 0488102
- Alessandro Orlandi, Classification relative des germes $f:\textbf {R}^{n}\rightarrow \textbf {R}$, Boll. Un. Mat. Ital. D (6) 1 (1982), no. 1, 193â214 (French, with Italian summary). MR 683373
- Richard S. Palais, The Morse lemma for Banach spaces, Bull. Amer. Math. Soc. 75 (1969), 968â971. MR 253378, DOI 10.1090/S0002-9904-1969-12318-9
- Peter B. Percell and Peter N. Brown, Finite determination of bifurcation problems, SIAM J. Math. Anal. 16 (1985), no. 1, 28â46. MR 772867, DOI 10.1137/0516003
- Andrew du Plessis, On the determinacy of smooth map-germs, Invent. Math. 58 (1980), no. 2, 107â160. MR 570877, DOI 10.1007/BF01403166
- Andrew du Plessis, Genericity and smooth finite determinacy, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 295â312. MR 713068, DOI 10.1090/pspum/040.1/713068
- Andrew du Plessis and Leslie Wilson, On right-equivalence, Math. Z. 190 (1985), no. 2, 163â205. MR 797537, DOI 10.1007/BF01160458 V. Poenaru, SingularitĂ©s ${C^\infty }$ en prĂ©sence de symĂ©trie, Lecture Notes in Math., vol. 510, Springer, 1975.
- Tim Poston and Ian Stewart, Catastrophe theory and its applications, Surveys and Reference Works in Mathematics, No. 2, Pitman, London-San Francisco, Calif.-Melbourne; distributed by Fearon-Pitman Publishers, Inc., Belmont, Calif., 1978. With an appendix by D. R. Olsen, S. R. Carter and A. Rockwood. MR 0501079
- John D. Randall, Topological sufficiency of smooth map-germs, Invent. Math. 67 (1982), no. 1, 117â121. MR 664327, DOI 10.1007/BF01393375
- Joel W. Robbin, On the existence theorem for differential equations, Proc. Amer. Math. Soc. 19 (1968), 1005â1006. MR 227583, DOI 10.1090/S0002-9939-1968-0227583-0
- C. Sabbah, Le type topologique Ă©clatĂ© dâune application analytique, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 433â440 (French). MR 713269, DOI 10.1090/pspum/040.2/713269
- Robert J. Sacker, A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math. 18 (1965), 717â732. MR 188566, DOI 10.1002/cpa.3160180409 A. M. Selby, Determinacy and unfolding for non-smooth maps, Doctoral Thesis, Report 83-19, Department of Mathematics and Statistics, McGill University, Montreal, 1983.
- Masahiro Shiota, Equivalence of differentiable mappings and analytic mappings, Inst. Hautes Ătudes Sci. Publ. Math. 54 (1981), 237â322. MR 644558
- Masahiro Shiota, Equivalence of differentiable functions, rational functions and polynomials, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 4, 167â204 (1983) (English, with French summary). MR 694133, DOI 10.5802/aif.899
- StanisĆaw Janeczko, On algebraic criteria for $k$-determinacy of germs of smooth functions on manifolds with boundary, Demonstratio Math. 15 (1982), no. 4, 1113â1123. MR 705836
- Floris Takens, A note on sufficiency of jets, Invent. Math. 13 (1971), 225â231. MR 293649, DOI 10.1007/BF01404632
- RenĂ© Thom, StabilitĂ© structurelle et morphogĂ©nĂšse, Mathematical Physics Monograph Series, W. A. Benjamin, Inc., Reading, Mass., 1972 (French). Essai dâune thĂ©orie gĂ©nĂ©rale des modĂšles. MR 0488155
- Jean-Claude Tougeron, IdĂ©aux de fonctions diffĂ©rentiables. I, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 1, 177â240 (French). MR 240826, DOI 10.5802/aif.281 â, IdĂ©aux de fonctions diffĂ©rentiables, Ergebnisse der Mathematik 71, Springer, 1972. VĆ©-Trong-TuĂąn, A representation theorem for differentiable functions. II, preprint, 1987.
- C. T. C. Wall, Introduction to the preparation theorem, Proceedings of Liverpool SingularitiesâSymposium, I (1969/70), Lecture Notes in Mathematics, Vol. 192, Springer, Berlin, 1971, pp. 90â96. MR 0307257
- C. T. C. Wall, Are maps finitely determined in general?, Bull. London Math. Soc. 11 (1979), no. 2, 151â154. MR 541968, DOI 10.1112/blms/11.2.151
- C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), no. 6, 481â539. MR 634595, DOI 10.1112/blms/13.6.481
- C. T. C. Wall, Notes on the classification of singularities, Proc. London Math. Soc. (3) 48 (1984), no. 3, 461â513. MR 735225, DOI 10.1112/plms/s3-48.3.461
- Gordon Wassermann, Stability of unfoldings, Lecture Notes in Mathematics, Vol. 393, Springer-Verlag, Berlin-New York, 1974. MR 0410789, DOI 10.1007/BFb0061658
- Leslie C. Wilson, Jets with regular zeros, Pacific J. Math. 93 (1981), no. 2, 471â478. MR 623578, DOI 10.2140/pjm.1981.93.471
- Yosef Yomdin, Some results on finite determinacy and stability not requiring the explicit use of smoothness, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, R.I., 1983, pp. 667â674. MR 713290
- Guo Bin Zhang, A necessary and sufficient condition for a $C^{\infty }$ function to be finitely determined, Adv. in Math. (Beijing) 12 (1983), no. 1, 53â56 (Chinese). MR 694120
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 85-113
- MSC: Primary 58C27
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937251-3
- MathSciNet review: 937251