Deforming a PL submanifold of Euclidean space into a hyperplane
HTML articles powered by AMS MathViewer
- by Jože Vrabec
- Trans. Amer. Math. Soc. 312 (1989), 155-178
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937253-7
- PDF | Request permission
Abstract:
Let $M$ be a closed, $k$-connected, $m$-dimensional ${\text {PL}}$ submanifold of ${\mathbb {R}^{2m - k - 1}}\;(1 \leq k \leq m - 4)$. The main result of this paper states that if $m - k$ is even, then every embedding of $M$ into ${\mathbb {R}^{2m - k}}$ can be isotopically deformed into ${\mathbb {R}^{2m - k - 1}}$, and specifies which embeddings of $M$ into ${\mathbb {R}^{2m - k}}$ can be deformed into ${\mathbb {R}^{2m - k - 1}}$ in case $m - k$ is odd.References
- Dan Burghelea, Richard Lashof, and Melvin Rothenberg, Groups of automorphisms of manifolds, Lecture Notes in Mathematics, Vol. 473, Springer-Verlag, Berlin-New York, 1975. With an appendix (“The topological category”) by E. Pedersen. MR 0380841
- Marshall M. Cohen, A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189–229. MR 248802, DOI 10.1090/S0002-9947-1969-0248802-6
- André Haefliger and Valentin Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 75–91 (French). MR 172296
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- J. F. P. Hudson, Concordance, isotopy, and diffeotopy, Ann. of Math. (2) 91 (1970), 425–448. MR 259920, DOI 10.2307/1970632
- L. S. Husch, Suspensions of $\textrm {PL}$-embeddings, Bull. London Math. Soc. 2 (1970), 191–195. MR 266218, DOI 10.1112/blms/2.2.191
- R. Lashof, Embedding spaces, Illinois J. Math. 20 (1976), no. 1, 144–154. MR 388403
- Claude Morlet, Les méthodes de la topologie différentielle dans l’étude des variétés semi-linéaires, Ann. Sci. École Norm. Sup. (4) 1 (1968), 313–394 (French). MR 236936 R. D. Rigdon, Immersions and embeddings of manifolds in Euclidean space, Thesis, Univ. of California, Berkeley, 1970.
- C. P. Rourke and B. J. Sanderson, Block bundles. I, Ann. of Math. (2) 87 (1968), 1–28. MR 226645, DOI 10.2307/1970591
- C. P. Rourke and B. J. Sanderson, Block bundles. III. Homotopy theory, Ann. of Math. (2) 87 (1968), 431–483. MR 232404, DOI 10.2307/1970714
- G. P. Scott, A note on piecewise-linear immersions, Quart. J. Math. Oxford Ser. (2) 21 (1970), 257–263. MR 271953, DOI 10.1093/qmath/21.3.257
- Ralph S. Tindell, Knotting tori in hyperplanes, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 147–153. MR 0239614
- Jože Vrabec, Knotting a $k$-connected closed $\textrm {PL}$ $m$-manifold in $E^{2m-k}$, Trans. Amer. Math. Soc. 233 (1977), 137–165. MR 645405, DOI 10.1090/S0002-9947-1977-0645405-0
- C. T. C. Wall, Geometrical connectivity. I, J. London Math. Soc. (2) 3 (1971), 597–604. MR 290387, DOI 10.1112/jlms/s2-3.4.597
- Tsutomu Yasui, On the map defined by regarding embeddings as immersions, Hiroshima Math. J. 13 (1983), no. 3, 457–476. MR 725959
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 155-178
- MSC: Primary 57Q37; Secondary 57Q35
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937253-7
- MathSciNet review: 937253