Quadrature and harmonic $L^ 1$-approximation in annuli
HTML articles powered by AMS MathViewer
- by D. H. Armitage and M. Goldstein
- Trans. Amer. Math. Soc. 312 (1989), 141-154
- DOI: https://doi.org/10.1090/S0002-9947-1989-0949896-5
- PDF | Request permission
Abstract:
Open sets $D$ in ${R^N}\;(N \geq 3)$ with the property that $\bar D$ is a closed annulus $\{ x:{r_1} \leq \;\left \| x\right \| \; \leq {r_2}\}$ are characterized by quadrature formulae involving mean values of certain harmonic functions. One such characterization is used to give a criterion for the existence of a best harmonic ${L^1}$ approximant to a function which is subharmonic (and satisfies some other conditions) in an annulus.References
- Yusuf Avci, Characterization of shell domains by quadrature identities, J. London Math. Soc. (2) 23 (1981), no. 1, 123–128. MR 602244, DOI 10.1112/jlms/s2-23.1.123
- A. F. Beardon, Integral means of subharmonic functions, Proc. Cambridge Philos. Soc. 69 (1971), 151–152. MR 281937, DOI 10.1017/s0305004100046491
- R. Courant and D. Hilbert, Shu-hsüeh wu-li fang fa. Chüan I, Science Press, Peking, 1965 (Chinese). Translated from the English by Ch’ien Min and Kuo Tun-jen. MR 0195654
- Jacques Deny, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 1 (1949), 103–113 (1950) (French). MR 37414, DOI 10.5802/aif.9
- Joseph L. Doob, Classical potential theory and its probabilistic counterpart, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1984 edition. MR 1814344, DOI 10.1007/978-3-642-56573-1
- Nicolaas du Plessis, An introduction to potential theory, University Mathematical Monographs, No. 7, Hafner Publishing Co., Darien, Conn.; Oliver and Boyd, Edinburgh, 1970. MR 0435422
- P. M. Gauthier, M. Goldstein, and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), no. 1, 71–82. MR 703466, DOI 10.1112/jlms/s2-28.1.71
- M. Goldstein, W. Haussmann, and K. Jetter, Best harmonic $L^1$ approximation to subharmonic functions, J. London Math. Soc. (2) 30 (1984), no. 2, 257–264. MR 771421, DOI 10.1112/jlms/s2-30.2.257
- Myron Goldstein, Werner Haussmann, and Lothar Rogge, On the mean value property of harmonic functions and best harmonic $L^1$-approximation, Trans. Amer. Math. Soc. 305 (1988), no. 2, 505–515. MR 924767, DOI 10.1090/S0002-9947-1988-0924767-8
- Ü. Kuran, On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311–312. MR 320348, DOI 10.1112/blms/4.3.311
- Makoto Sakai, Quadrature domains, Lecture Notes in Mathematics, vol. 934, Springer-Verlag, Berlin-New York, 1982. MR 663007, DOI 10.1007/BFb0095892
- Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044, DOI 10.1007/978-3-662-41583-2
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 141-154
- MSC: Primary 31B05; Secondary 41A30
- DOI: https://doi.org/10.1090/S0002-9947-1989-0949896-5
- MathSciNet review: 949896