Digital representations using the greatest integer function
HTML articles powered by AMS MathViewer
- by Bruce Reznick
- Trans. Amer. Math. Soc. 312 (1989), 355-375
- DOI: https://doi.org/10.1090/S0002-9947-1989-0954602-4
- PDF | Request permission
Abstract:
Let ${S_d}(\alpha )$ denote the set of all integers which can be expressed in the form $\sum {{\varepsilon _i}[{\alpha ^i}]}$, with ${\varepsilon _i} \in \{ 0, \ldots ,d - 1\}$, where $d \geq 2$ is an integer and $\alpha \geq 1$ is real, and let ${I_d}$ denote the set of $\alpha$ so that ${S_d}(\alpha ) = {{\mathbf {Z}}^ + }$. We show that ${I_d} = [1,{r_d}) \cup \{ d\}$, where ${r_2} = {13^{1/4}},{r_3} = {22^{1/3}}$ and ${r_2} = {({d^2} - d - 2)^{1/2}}$ for $d \geq 4$. If $\alpha \notin {I_d}$ we show that ${T_d}(\alpha )$, the complement of ${S_d}(\alpha )$, is infinite, and discuss the density of ${T_d}(\alpha )$ when $\alpha < d$. For $d \geq 4$ and a particular quadratic irrational $\beta = \beta (d) < d$, we describe ${T_d}(\beta )$ explicitly and show that $|{T_d}(\beta ) \cap [0,n]|$ is of order ${n^{e(d)}}$, where $e(d) < 1$.References
- Henry L. Alder, The Number System in More General Scales, Math. Mag. 35 (1962), no. 3, 145–151. MR 1571193
- J. L. Brown Jr., Note on complete sequences of integers, Amer. Math. Monthly 68 (1961), 557–560. MR 130207, DOI 10.2307/2311150 N. G. deBruijn, On Mahler’s partition problem, Indag. Math. 10 (1948), 210-220.
- Aviezri S. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), no. 2, 105–114. MR 777556, DOI 10.2307/2322638
- J. A. Fridy, A generalization of $n$-scale number representation, Amer. Math. Monthly 72 (1965), 851–855. MR 183672, DOI 10.2307/2315028 C. Giuli and R. Giuli, A primer on Stern’s diatomic sequence, Fibonacci Quart. 17 (1979), 103-108, 246-248, 318-320.
- R. L. Graham, On a conjecture of Erdős in additive number theory, Acta Arith. 10 (1964/65), 63–70. MR 163878, DOI 10.4064/aa-10-1-63-70
- R. L. Graham, On sums of integers taken from a fixed sequence, Proceedings of the Washington State University Conference on Number Theory (Washington State Univ., Pullman, Wash., 1971) Dept. Math., Washington State Univ., Pullman, Wash., 1971, pp. 22–40. MR 0319935
- Reviews in number theory, 1973–83. Vol. 1a–6a, American Mathematical Society, Providence, RI, 1984. Reviews reprinted from Mathematical Reviews; Edited by Richard K. Guy. MR 1001567 V. E. Hoggatt and C. King, Problem E 1424, Amer. Math. Monthly 67 (1960), 593. —, Solution to Problem E 1424, Amer. Math. Monthly 68 (1961), 179-180.
- L. F. Klosinski, G. L. Alexanderson, and A. P. Hillman, The William Lowell Putnam Mathematical Competition, Amer. Math. Monthly 91 (1984), no. 8, 487–495. MR 1540495, DOI 10.2307/2322570
- D. H. Lehmer, On Stern’s Diatomic Series, Amer. Math. Monthly 36 (1929), no. 2, 59–67. MR 1521653, DOI 10.2307/2299356 W. J. LeVeque, Reviews in number theory, 1940-1972, 6 vols., Amer. Math. Soc., Providence, R.I., 1973.
- D. A. Lind, An extension of Stern’s diatomic series, Duke Math. J. 36 (1969), 55–60. MR 245504
- Kurt Mahler, On a special functional equation, J. London Math. Soc. 15 (1940), 115–123. MR 2921, DOI 10.1112/jlms/s1-15.2.115 B. Reznick, A natural history of the Stern sequence (in preparation). —, Restricted binary partitions (in preparation).
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 355-375
- MSC: Primary 11A63
- DOI: https://doi.org/10.1090/S0002-9947-1989-0954602-4
- MathSciNet review: 954602