Rigidity for complete Weingarten hypersurfaces
HTML articles powered by AMS MathViewer
- by M. Dajczer and K. Tenenblat
- Trans. Amer. Math. Soc. 312 (1989), 129-140
- DOI: https://doi.org/10.1090/S0002-9947-1989-0956030-4
- PDF | Request permission
Abstract:
We classify, locally and globally, the ruled Weingarten hypersurfaces of the Euclidean space. As a consequence of the local classification and a rigidity theorem of Dajczer and Gromoll, it follows that a complete Weingarten hypersurface which does not contain an open subset of the form ${L^3} \times {{\mathbf {R}}^{n - 3}}$, where ${L^3}$ is unbounded and $n \geq 3$, is rigid.References
- E. Beltrami, Risoluzione di un problema relativo alla teoria delle superficie gobbe, Ann. Mat. Pura Appl. 7 (1865), 139-150.
- J. M. Barbosa, M. Dajczer, and L. P. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J. 33 (1984), no. 4, 531–547. MR 749313, DOI 10.1512/iumj.1984.33.33028
- E. Cartan, La déformation des hypersurfaces dans l’espace euclidien réel à $n$ dimensions, Bull. Soc. Math. France 44 (1916), 65–99 (French). MR 1504750 O. Dini, Sulle superficie gobbe nele quali uno dei due raggi di curvatura principale è una funzione dell’altro, Ann. Mat. Pura Appl. 7 (1865), 205-210.
- Marcos Dajczer and Detlef Gromoll, Gauss parametrizations and rigidity aspects of submanifolds, J. Differential Geom. 22 (1985), no. 1, 1–12. MR 826420 —, Rigidity of complete, Euclidean hypersurfaces, Preprint.
- Philip Hartman and Louis Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901–920. MR 126812, DOI 10.2307/2372995
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374. MR 270280, DOI 10.2307/1970625 U. Sbrana, Sulle varietà ad $n - 1$ dimensione deformabili nello spazio euclideo ad $n$ dimensione, Rend. Circ. Mat. Palermo 27 (1909), 1-45. M. Spivak, A comprehensive introduction to differential geometry, Publish or Perish, 1979.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 129-140
- MSC: Primary 53C42; Secondary 57R40
- DOI: https://doi.org/10.1090/S0002-9947-1989-0956030-4
- MathSciNet review: 956030