Some families of isoparametric hypersurfaces and rigidity in a complex hyperbolic space
HTML articles powered by AMS MathViewer
- by Micheal H. Vernon
- Trans. Amer. Math. Soc. 312 (1989), 237-256
- DOI: https://doi.org/10.1090/S0002-9947-1989-0983871-X
- PDF | Request permission
Abstract:
The geometric notion of equivalence for submanifolds in a chosen ambient space is that of congruence. In this study, a certain type of isoparametric hypersurface of a complex hyperbolic space form is shown to have a rigid immersion by utilizing the congruences of a Lorentzian hyperbolic space form that lies as an ${S^1}$-fiber bundle over the complex hyperbolic space. Several families of isoparametric hypersurfaces (namely tubes and horospheres) are constructed whose immersions are rigid.References
- Thomas E. Cecil and Patrick J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), no. 2, 481–499. MR 637703, DOI 10.1090/S0002-9947-1982-0637703-3
- B. Y. Chen, G. D. Ludden, and S. Montiel, Real submanifolds of a Kaehler manifold, Algebras Groups Geom. 1 (1984), no. 2, 176–212. MR 760492
- Bang-yen Chen and Koichi Ogiue, Two theorems on Kaehler manifolds, Michigan Math. J. 21 (1974), 225–229 (1975). MR 367884
- B.-Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28–67. MR 618545, DOI 10.1515/crll.1981.325.28
- Jost-Hinrich Eschenburg, Horospheres and the stable part of the geodesic flow, Math. Z. 153 (1977), no. 3, 237–251. MR 440605, DOI 10.1007/BF01214477
- Richard H. Escobales Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geometry 10 (1975), 253–276. MR 370423
- A. Gray and L. Vanhecke, The volumes of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. (3) 44 (1982), no. 2, 215–243. MR 647431, DOI 10.1112/plms/s3-44.2.215
- Ernst Heintze and Hans-Christoph Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977), no. 4, 481–491 (1978). MR 512919 R. Howard, The Weingarten map of a tube, personal communication.
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697 Y. Maeda, On some real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976).
- Sebastián Montiel and Alfonso Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), no. 2, 245–261. MR 833849, DOI 10.1007/BF00164402 K. Nomizu, Elie Cartan’s work on isoparametric families of hypersurfaces, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975. B. O’Neill, Semi-Riemannian geometry, Academic Press, 1983.
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
- Qi Ming Wang, Isoparametric hypersurfaces in complex projective spaces, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980) Sci. Press Beijing, Beijing, 1982, pp. 1509–1523. MR 714387
- L. Vanhecke and T. J. Willmore, Jacobi fields and geodesic spheres, Proc. Roy. Soc. Edinburgh Sect. A 82 (1978/79), no. 3-4, 233–240. MR 532906, DOI 10.1017/S0308210500011215
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 237-256
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9947-1989-0983871-X
- MathSciNet review: 983871