Topological types of finitely-$C^ 0$-$K$-determined map-germs
HTML articles powered by AMS MathViewer
- by Takashi Nishimura
- Trans. Amer. Math. Soc. 312 (1989), 621-639
- DOI: https://doi.org/10.1090/S0002-9947-1989-0946220-9
- PDF | Request permission
Abstract:
In this article, we investigate the following two problems Problem 1. Is finite-${C^0}{\text {-}}K$-determinacy a topological invariant among analytic map-germs? Problem 2. Do the topological types of all finitely-${C^0}{\text {-}}K$-determined map-germs have topological moduli, i.e. do they have infinitely many topological types with the cardinal number of continuum? Problem $1$ is solved affirmatively in the complex case. Problem $2$ is solved negatively in the complex case; and affirmatively in the real case.References
- N. A. A’Campo, Le nombre de Lefschetz d’une monodromie, Nederl. Akad. Wetensch. Proc. Ser. A=Indag. Math. 76 (1973), 113-118.
- Kenji Aoki, On topological types of polynomial map-germs of plane to plane, Mem. School Sci. Engrg. Waseda Univ. 44 (1980), 133–156. MR 626959
- Takuo Fukuda, Types topologiques des polynômes, Inst. Hautes Études Sci. Publ. Math. 46 (1976), 87–106 (French). MR 494152, DOI 10.1007/BF02684319
- Christopher G. Gibson, Klaus Wirthmüller, Andrew A. du Plessis, and Eduard J. N. Looijenga, Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin-New York, 1976. MR 0436203, DOI 10.1007/BFb0095244
- Helmut A. Hamm and Lê Dũng Tráng, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317–355. MR 401755, DOI 10.24033/asens.1250
- Henry C. King, Topological type of isolated critical points, Ann. of Math. (2) 107 (1978), no. 2, 385–397. MR 494153, DOI 10.2307/1971121
- Henry C. King, Topological type in families of germs, Invent. Math. 62 (1980/81), no. 1, 1–13. MR 595579, DOI 10.1007/BF01391660 J. N. Mather, Notes on topological stability, Lecture Notes, Harvard Univ., 1970.
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- Isao Nakai, On topological types of polynomial mappings, Topology 23 (1984), no. 1, 45–66. MR 721451, DOI 10.1016/0040-9383(84)90024-7
- René Thom, La stabilité topologique des applications polynomiales, Enseign. Math. (2) 8 (1962), 24–33 (French). MR 148079
- R. Thom, Local topological properties of differentiable mappings, Differential Analysis, Bombay Colloq., 1964, Oxford Univ. Press, London, 1964, pp. 191–202. MR 0195102
- E. R. Van Kampen, The Topological Transformations of a Simple Closed Curve Into Itself, Amer. J. Math. 57 (1935), no. 1, 142–152. MR 1507062, DOI 10.2307/2372026
- C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), no. 6, 481–539. MR 634595, DOI 10.1112/blms/13.6.481
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 621-639
- MSC: Primary 58C27
- DOI: https://doi.org/10.1090/S0002-9947-1989-0946220-9
- MathSciNet review: 946220