Uniform analyticity of orthogonal projections
HTML articles powered by AMS MathViewer
- by R. R. Coifman and Margaret A. M. Murray
- Trans. Amer. Math. Soc. 312 (1989), 779-817
- DOI: https://doi.org/10.1090/S0002-9947-1989-0951882-6
- PDF | Request permission
Abstract:
Let $X$ denote the circle $T$ or the interval $[ - 1,1]$, and let $d\mu$ denote a nonnegative, absolutely continuous measure on $X$ . Under what conditions does the Gram-Schmidt procedure in the weighted space ${L^2}(X,{\omega ^2}\;d\mu )$ depend analytically on the logarithm of the weight function $\omega$? In this paper, we show that, in numerous examples of interest, $\log \omega \in BMO$ is a sufficient (often necessary!) condition for analyticity of the Gram-Schmidt procedure. These results are then applied to establish the local analyticity of certain infinite-dimensional Toda flows.References
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
- R. R. Coifman and R. Rochberg, Projections in weighted spaces, skew projections and inversion of Toeplitz operators, Integral Equations Operator Theory 5 (1982), no. 2, 145–159. MR 647697, DOI 10.1007/BF01694036
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- P. Deift, L. C. Li, and C. Tomei, Toda flows with infinitely many variables, J. Funct. Anal. 64 (1985), no. 3, 358–402. MR 813206, DOI 10.1016/0022-1236(85)90065-5
- I. Peral and J. L. Rubio de Francia (eds.), Recent progress in Fourier analysis, North-Holland Mathematics Studies, vol. 111, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 101. MR 848136
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- N. Kerzman and E. M. Stein, The Szegő kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), no. 2, 197–224. MR 508154
- Benjamin Muckenhoupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 23 (1969), 306–310. MR 247360, DOI 10.1090/S0002-9939-1969-0247360-5 G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 779-817
- MSC: Primary 42A05; Secondary 33A65, 42C10, 46N05, 47B38, 58F07
- DOI: https://doi.org/10.1090/S0002-9947-1989-0951882-6
- MathSciNet review: 951882