Sharp estimates for the nontangential maximal function and the Lusin area function in Lipschitz domains
HTML articles powered by AMS MathViewer
- by Rodrigo Bañuelos and Charles N. Moore
- Trans. Amer. Math. Soc. 312 (1989), 641-662
- DOI: https://doi.org/10.1090/S0002-9947-1989-0957080-4
- PDF | Request permission
Abstract:
Let $u$ be a harmonic function on a domain of the form $D = \{ (x,y):x \in {{\mathbf {R}}^n},y \in {\mathbf {R}},y > \phi (x)\}$ where $\phi :{{\mathbf {R}}^n} \to {\mathbf {R}}$ is a Lipschitz function. The authors show a good-$\lambda$ inequality between $Au$, the Lusin area function of $u$, and $Nu$, the nontangential maximal function of $u$. This leads to an ${L^p}$ inequality of the form $\left \|Au\right \|_p \leq C_p\left \|Nu\right \|_p$ which is sharp in the sense that ${C_p}$ is of the smallest possible order in $p$ as $p \to \infty$. For $P \in \partial D$ and $t > 0$ we also consider the functions $Au(P + (0,t))$ and $Nu(P + (0,t))$ and show that a corollary of the good-$\lambda$ inequality is a law of the iterated logarithm involving these two functions as $t \to 0$. If $n = 1$ and $\phi$ has a small Lipschitz constant the above results are shown valid with the roles of $Nu$ and $Au$ interchanged.References
- Rodrigo Bañuelos, Ivo Klemes, and Charles N. Moore, An analogue for harmonic functions of Kolmogorov’s law of the iterated logarithm, Duke Math. J. 57 (1988), no. 1, 37–68. MR 952225, DOI 10.1215/S0012-7094-88-05702-X
- Rodrigo Bañuelos and Charles N. Moore, Some results in analysis related to the law of the iterated logarithm, Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, pp. 47–80. MR 1009169
- D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math. 26 (1977), no. 2, 182–205. MR 474525, DOI 10.1016/0001-8708(77)90029-9
- D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 527–544. MR 340557, DOI 10.4064/sm-44-6-527-544
- S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217–246. MR 800004, DOI 10.1007/BF02567411
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Björn E. J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math. 67 (1980), no. 3, 297–314. MR 592391, DOI 10.4064/sm-67-3-297-314
- Björn E. J. Dahlberg, David S. Jerison, and Carlos E. Kenig, Area integral estimates for elliptic differential operators with nonsmooth coefficients, Ark. Mat. 22 (1984), no. 1, 97–108. MR 735881, DOI 10.1007/BF02384374
- Richard Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1984. MR 750829
- R. Fefferman, R. Gundy, M. Silverstein, and E. M. Stein, Inequalities for ratios of functionals of harmonic functions, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 24, 7958–7960. MR 687499, DOI 10.1073/pnas.79.24.7958
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Richard A. Hunt and Richard L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307–322. MR 226044, DOI 10.1090/S0002-9947-1968-0226044-7
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI 10.1016/0001-8708(82)90054-8
- Carlos E. Kenig, Weighted $H^{p}$ spaces on Lipschitz domains, Amer. J. Math. 102 (1980), no. 1, 129–163. MR 556889, DOI 10.2307/2374173 C. N. Moore, Some applications of Cauchy integrals on curves, Ph. D. Thesis, Univ. of California at Los Angeles, 1986.
- Takafumi Murai and Akihito Uchiyama, Good $\lambda$ inequalities for the area integral and the nontangential maximal function, Studia Math. 83 (1986), no. 3, 251–262. MR 850827, DOI 10.4064/sm-83-3-251-262
- S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165–179. (errata insert). MR 312140, DOI 10.4064/sm-44-2-165-179
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Jan-Olov Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), no. 3, 511–544. MR 529683, DOI 10.1512/iumj.1979.28.28037
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 641-662
- MSC: Primary 42B25; Secondary 31A20
- DOI: https://doi.org/10.1090/S0002-9947-1989-0957080-4
- MathSciNet review: 957080