Nonuniqueness for solutions of the Korteweg-de Vries equation
HTML articles powered by AMS MathViewer
- by Amy Cohen and Thomas Kappeler
- Trans. Amer. Math. Soc. 312 (1989), 819-840
- DOI: https://doi.org/10.1090/S0002-9947-1989-0988885-1
- PDF | Request permission
Abstract:
Variants of the inverse scattering method give examples of nonuniqueness for the Cauchy problem for ${\text {KdV}}$. One example gives a nontrivial ${C^\infty }$ solution $u$ in a domain $\{ (x,t):0 < t < H(x)\}$ for a positive nondecreasing function $H$ , such that $u$ vanishes to all orders as $t \downarrow 0$ . This solution decays rapidly as $x \to + \infty$ , but cannot be well behaved as $x$ moves left. A different example of nonuniqueness is given in the quadrant $x \geq 0,t \geq 0$, with nonzero initial data.References
- Amy Cohen, Decay and regularity in the inverse scattering problem, J. Math. Anal. Appl. 87 (1982), no. 2, 395–426. MR 658022, DOI 10.1016/0022-247X(82)90132-9
- Amy Cohen and Thomas Kappeler, Solutions to the Korteweg-de Vries equation with initial profile in $L^1_1(\textbf {R})\cap L^1_N(\textbf {R}^+)$, SIAM J. Math. Anal. 18 (1987), no. 4, 991–1025. MR 892486, DOI 10.1137/0518076
- P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), no. 2, 121–251. MR 512420, DOI 10.1002/cpa.3160320202
- H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, Vol. 31, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0448523 L. Faddeev, Properties of the $S$-matrix of the one-dimensional Schrodinger equation, Amer. Math. Soc. Transl. 65 (1967), 129-166. C. Gardner, J. Greene, M. Kruskal and R. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett. 19 (1967), 1095-1097.
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 3: Theory of differential equations, Academic Press, New York-London, 1967. Translated from the Russian by Meinhard E. Mayer. MR 0217416 L. Hörmander, Linear partial differential equations, Springer-Verlag, New York, 1976.
- Thomas Kappeler, Solutions to the Korteweg-de Vries equation with irregular initial profile, Comm. Partial Differential Equations 11 (1986), no. 9, 927–945. MR 844170, DOI 10.1080/03605308608820451
- S. N. Kruzhkov and A. V. Faminskiĭ, Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Mat. Sb. (N.S.) 120(162) (1983), no. 3, 396–425 (Russian). MR 691986
- Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, DOI 10.1002/cpa.3160210503
- A. Menikoff, The existence of unbounded solutions of the Korteweg-de Vries equation, Comm. Pure Appl. Math. 25 (1972), 407–432. MR 303129, DOI 10.1002/cpa.3160250404
- Shunichi Tanaka, Korteweg-de Vries equation: construction of solutions in terms of scattering data, Osaka Math. J. 11 (1974), 49–59. MR 352744
- R. Temam, Sur un problème non linéaire, J. Math. Pures Appl. (9) 48 (1969), 159–172 (French). MR 261183
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 312 (1989), 819-840
- MSC: Primary 35Q20
- DOI: https://doi.org/10.1090/S0002-9947-1989-0988885-1
- MathSciNet review: 988885