Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Weakly almost periodic flows
HTML articles powered by AMS MathViewer

by R. Ellis and M. Nerurkar
Trans. Amer. Math. Soc. 313 (1989), 103-119
DOI: https://doi.org/10.1090/S0002-9947-1989-0930084-3

Abstract:

The notion of the enveloping semigroup of a flow is applied to some situations in ergodic theory. In particular, weakly almost periodic functions on groups are studied and Moore’s ergodic theorem is proved.
References
  • Joseph Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122. MR 956049
  • N. Bourbaki, Topologie générale, 1948 edition.
  • Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119–125. MR 88674
  • Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
  • R. Ellis and M. Nerurkar, Enveloping semigroups in ergodic theory, Proc. Special Year in Ergodic Theory, University of Maryland, 1987.
  • A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168–186 (French). MR 47313, DOI 10.2307/2372076
  • Gary Laison, A semigroup associated with an invariant measure on a transformation group, Math. Systems Theory 8 (1974/75), no. 3, 276–288. MR 383382, DOI 10.1007/BF01762677
  • Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, DOI 10.2307/2373052
  • C. Ryll-Nardzewski, Generalized random ergodic theorems and weakly almost periodic functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 271–275. MR 169984
  • Jean-Pierre Troallic, Espaces fonctionnels et théorèmes de I. Namioka, Bull. Soc. Math. France 107 (1979), no. 2, 127–137 (French, with English summary). MR 545168
  • William A. Veech, Weakly almost periodic functions on semisimple Lie groups, Monatsh. Math. 88 (1979), no. 1, 55–68. MR 550072, DOI 10.1007/BF01305857
  • R. Zimmer, Ergodic theory and semisimple Lie groups, Birkhäuser, Boston, Mass., 1984.
  • Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
Similar Articles
Bibliographic Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 313 (1989), 103-119
  • MSC: Primary 28D15; Secondary 28D20, 54H20, 58F11, 58F27
  • DOI: https://doi.org/10.1090/S0002-9947-1989-0930084-3
  • MathSciNet review: 930084