The lifting problem for affine structures in nilpotent Lie groups
HTML articles powered by AMS MathViewer
- by Nguiffo B. Boyom
- Trans. Amer. Math. Soc. 313 (1989), 347-379
- DOI: https://doi.org/10.1090/S0002-9947-1989-0935938-X
- PDF | Request permission
Abstract:
Affine manifolds occur in several situations in pure and applied mathematics, (e.g. leaves of Lagrangian foliations, completely integrable Hamiltonian systems, linear representations of virtually polycyclic groups, geometric quantization and so on). This work is devoted to left invariant affinely flat structures in Lie groups. We are mainly concerned with the following situation. Let $G$ and ${G_0}$ be nilpotent Lie groups of dimension $n + 1$ and $n$ , respectively and let $h:G \to {G_0}$ be a continuous homomorphism from $G$ onto ${G_0}$ . Given a left invariant affinely flat structure $({G_0},{\nabla _0})$ the lifting problem is to discover whether $G$ has a left invariant affinely flat structure $(G,\nabla )$ such that $h$ becomes an affine morphism. In the present work we answer positively when $({G_0},{\nabla _0})$ is "normal". Therefore the existence problem for a left invariant complete affinely flat structure in nilpotent Lie groups is solved by applying the following subsequent results. Let $\mathfrak {A}f({G_0})$ be the set of left invariant affinely flat structures in the nilpotent Lie group ${G_0},({1^ \circ })\;\mathfrak {A}f({G_0}) \ne \emptyset$ implies the existence of normal structure $({G_0},{\nabla _0}) \in \mathfrak {A}f({G_0});({2^ \circ })\;h:G \to {G_0}$ being as above every normal structure $({G_0},{\nabla _0})$ has a normal lifted in $\mathfrak {A}f(G)$.References
- Louis Auslander, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977), no. 4, 809–826. MR 447470, DOI 10.2307/2373867 N. Bourbaki, Groups et algèbres de Lie, Chapters 7-8.
- G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2) 57 (1953), 591–603. MR 54581, DOI 10.2307/1969740 J. L. Koszul, Domaine de Vinberg et de Piatetsky Šapiro, Cours Univ. Genève 1966-67.
- Jean-Louis Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65–127 (French). MR 36511
- John Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), no. 2, 178–187. MR 454886, DOI 10.1016/0001-8708(77)90004-4 Nguiffo Boyom, Algèbres symetriques à gauche et algèbres de Lie réductives , Thèse ${3^e}$ cycle, Grenoble, 1965.
- Ngiuffo B. Boyom, Affine embeddings of real Lie groups, Transformation groups (Proc. Conf., Univ. Newcastle upon Tyne, Newcastle upon Tyne, 1976) London Math. Soc. Lecture Note Series, No. 26, Cambridge Univ. Press, Cambridge, 1977, pp. 21–39. MR 0470973 —, Structures affines des groupes de Lie nilpotents, (Preprint, Montpellier, 1983).
- John Scheuneman, Affine structures on three-step nilpotent Lie algebras, Proc. Amer. Math. Soc. 46 (1974), 451–454. MR 412344, DOI 10.1090/S0002-9939-1974-0412344-2 Séminaire Sophus Lie, Ecole Normale Supérieure, Paris, 1954-1955.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 313 (1989), 347-379
- MSC: Primary 53C30
- DOI: https://doi.org/10.1090/S0002-9947-1989-0935938-X
- MathSciNet review: 935938