Braids, link polynomials and a new algebra
HTML articles powered by AMS MathViewer
- by Joan S. Birman and Hans Wenzl
- Trans. Amer. Math. Soc. 313 (1989), 249-273
- DOI: https://doi.org/10.1090/S0002-9947-1989-0992598-X
- PDF | Request permission
Abstract:
A class function on the braid group is derived from the Kauffman link invariant. This function is used to construct representations of the braid groups depending on $2$ parameters. The decomposition of the corresponding algebras into irreducible components is given and it is shown how they are related to Jones’ algebras and to Brauer’s centralizer algebras.References
- J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.
E. Artin, Theorie der Zopfe, Hamburg Abh. 4 (1925), 47-72.
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Robert D. Brandt, W. B. R. Lickorish, and Kenneth C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), no. 3, 563–573. MR 837528, DOI 10.1007/BF01388747 Claude Bourin, Unpublished notes.
- Richard Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2) 38 (1937), no. 4, 857–872. MR 1503378, DOI 10.2307/1968843
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- Jim Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), no. 2, 295–320. MR 856165
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127 —, Braid groups, Hecke algebras and type II factors, Geometric Methods in Abstract Algebras, Proc. U.S.-Japan Symposium, Wiley, 1986, pp. 242-273.
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. MR 958895, DOI 10.1090/S0002-9947-1990-0958895-7 —, A states model for the Jones polynomial, Topology 26 (1987), 395-407. —, Sign and space: knots and physics, Lecture Notes, Torino. M. Kidwell, On the dimension of the Birman-Wenzl algebra, Unpublished notes.
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- W. B. R. Lickorish and Kenneth C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107–141. MR 880512, DOI 10.1016/0040-9383(87)90025-5
- W. B. R. Lickorish, A relationship between link polynomials, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 1, 109–112. MR 838656, DOI 10.1017/S0305004100065890
- George Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (1981), no. 2, 490–498. MR 630610, DOI 10.1016/0021-8693(81)90188-5
- Jun Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), no. 4, 745–758. MR 927059 H. Morton and H. B. Short, Calculating the $2$-variable polynomial for knots presented as closed braids, preprint. H. Morton and P. Traczyk, Knots, skeins and algebras, preprint. A. Ocneanu, A polynomial invariant for knots; a combinatorial and algebraic approach, preprint.
- Sheila Sundaram, Applications of the Hopf trace formula to computing homology representations, Jerusalem combinatorics ’93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 277–309. MR 1310588, DOI 10.1090/conm/178/01904
- Hans Wenzl, Hecke algebras of type $A_n$ and subfactors, Invent. Math. 92 (1988), no. 2, 349–383. MR 936086, DOI 10.1007/BF01404457 —, On the structure of Brauer’s centralizer algebras, Ann. of Math. 128 (1988), 179-193. David Yetter, Private correspondence with the first author.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 313 (1989), 249-273
- MSC: Primary 57M25; Secondary 17B99, 20F36
- DOI: https://doi.org/10.1090/S0002-9947-1989-0992598-X
- MathSciNet review: 992598