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RIGIDITY OF PSEUDO-HOLOMORPHIC CURVES

OF CONSTANT CURVATURE IN GRASSMANN MANIFOLDS

QUO-SHIN CHI AND YUNBO ZHENG

Abstract. Rigidity of minimal immersions of constant curvature in harmonic

sequences generated by holomorphic curves in Grassmann manifolds is studied

in this paper by lifting them to holomorphic curves in certain projective spaces.

We prove that for such curves the curvature must be positive, and that all

such simply connected curves in CP" are generated by Veronese curves, thus

generalizing Calabi's counterpart for holomorphic curves in CP" . We also

classify all holomorphic curves from the Riemann sphere into G(2,4) whose

curvature is equal to 2 into two families, which illustrates pseudo-holomorphic

curves of positive constant curvature in G(m, N) are in general not unitarily

equivalent, constracting to the fact that generic isometric complex submanifolds

in a Kaehler manifold are congruent.

0. Introduction

Given a harmonic map f from a Riemann surface M into the complex

Grassmann manifold G(m,N), by using the ¿^-transform associated to the

map /, S. S. Chern and J. G. Wolfson obtained the following sequence of

harmonic maps [6],

(0.1) / = /0-/,-/2-...

where f+x = dfi for j = 0,1,2, ... , and f: M -» C7(w , N) are harmonic

maps; one defines mj+x = 0 if f. is anti-holomorphic. We call fr a pseudo-

holomorphic curve of position r generated by / when / is holomorphic, where

/ is called the directrix of fr. Such curves with the induced metrics from the

associated Grassmannians form a class of minimal immersions. When special-

ized to G(l ,n + I) = CP" , a pseudo-holomorphic curve of position r is just

the r th position vector of a Frénet frame of a holomorphic curve projected

into CP" . The importance of such maps comes from the fact that any har-

monic map from the Riemann sphere, or any harmonic map of nonzero degree

from a torus, into CP" is pseudo-holomorphic [7]. Furthermore in [6] these

curves play a central role, when m, 's defined in the sequence (0.1) are all equal

and f 's are orthogonal, called Frenet harmonic sequences, for the study of
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harmonic maps from the Riemann sphere into (7(2,«). Henceforth they have

attracted much attention.

When a simply connected pseudo-holomorphic curve is of position zero in

CP", i.e., when it is holomorphic, Calabi showed that the only such curves

of constant curvature are obtained, up to unitary equivalence, by the Veronese

curves restricted to suitable domains of the Riemann sphere in a linear sub-

space of CP" ; furthermore any two isometric holomorphic curves in CP"

must be unitarily congruent [3, 4]. In this paper we generalize Calabi's results

in the following way. On the one hand we show that there is no (local) pseudo-

holomorphic curve of nonpositive constant curvature in G(m,N) (Theorem 1),

and that all simply connected pseudo-holomorphic curves of positive constant

curvature in CP" are unitarily equivalent to the ones generated by the Veronese

curves restricted to suitable domains in linear subspaces of CP" (Theorem 2).

Notice that the two theorems are completely local in nature, where no topo-

logical assumptions are needed. Theorem 2 implies previous results obtained

in [ 1 ] that any pseudo-holomorphic curve of constant curvature generated by a

rational normal curve in CP" is unitarily equivalent to one generated by some

Veronese curve; and also obtained in Bando and Ohnita, Minimal 2-spheres

with constant curvature in P„(C), (J. Math. Soc. Japan 39 (1987), sent to us

by the authors after this present paper was done), that any minimal immersion

of the Riemann sphere into CP" of constant curvature is unitarily equivalent

to one generated by some Veronese curve. We would like to point out that the

Riemann surfaces being spheres is crucial in Bando and Ohnita's analysis in that

they need the facts that the minimal immersions are thus pseudo-holomorphic

and that there are no nontrivial harmonic functions on a Riemann sphere.

On the other hand M. Green showed that generic isometric complex subman-

ifolds in a Kaehler manifold are congruent [9]. We shall classify in Theorem 3

the holomorphic curves from the Riemann sphere into (7(2,4) with the induced

constant curvature 2 into two classes, up to unitary equivalence, in which none

of the curves are congruent. This shows that the holomorphic curves of constant

curvature in the Grassmannians are among the "nongeneric" ones, making the

classification of such curves pretty interesting.

The unitary equivalence fails to be true in general for any two isometric

pseudo-holomorphic curves in CP". For example, the complex conjugate of

any holomorphic curve is pseudo-holomorphic and is isometric, but not unitar-

ily equivalent, to the holomorphic curve. Nevertheless one can still ask whether

they are generated by congruent holomorphic curves when the two pseudo-

holomorphic curves are of the same position (In [1] it is proved true in case

when the two isometric curves have the same Kaehler angles.) More gener-

ally it would be interesting to understand the space of noncongruent pseudo-

holomorphic curves in CP   which are isometric to a given one.

1 The first author has shown that a large class of pseudo-holomorphic curves from a compact

Riemann surface into CP2 are rigid up to unitary equivalence and the complex conjugation.
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Our starting point is the lifting holomorphic map defined in (1.17), which

transforms the metric of a pseudo-holomorphic curve into that of a holomor-

phic curve. By studying this lifting map, one can conclude the above theorems

via the corresponding counterparts of Calabi on holomorphic curves in CP" .

Another consequence of this construction is that the holomorphic liftings of two

isometric pseudo-holomorphic curves must be unitarily congruent, which seems

to be a first step towards understanding the rigidity of such curves (Proposition

1).

Basic material is developed in §1, where we collect formulas relating cer-

tain invariants of pseudo-holomorphic curves by using the method of moving

frames. These invariants have been studied before for various purposes [1, 15].

Construction of the lifting map (1.17) enables us to investigate these invariants,

which leads to the proof of Theorem 1 in §2 and Theorem 2 in §3. The proof

of Theorem 3 in §4 is based on some previous work done by G. Jensen [12].

We would like to thank Professor Gary Jensen, the second author's advi-

sor, for extensive discussion and kindly showing us their results in [1], which

initiated this study.

1.  PSEUDO-HOLOMORPHIC CURVES AND THE LIFTING MAPS

The complex Grassmann manifold G(m, N) is the set of all w-dimensional

linear subspaces of C through the origin, which can be realized as the homo-

geneous space U(N)/(U(m) x U(N - m)), where

n: U(N)^G(m,N),

g^[g-o]

is a principal U(m) x U(N - m)-bundle, o is the N x m matrix

K
o

and Im is the mxm identity matrix.

Let WAB be the Maurer-Cartan forms of U(N), 1 < A, B < N, and let e

be a local section of n : U(N) —» G(m, N). Set

(1-1) *ab = *'Wab)>

(1-2) ds2G(mN)=    Y.   *Ä-
\<i<m

m<a<N

Then dsG.m N, is a c/(Ar)-invariant hermitian metric on G(m,N) ; when m =

1 and N = n + 1 this is the Fubini-Study metric on CP" with constant holo-

morphic curvature 4.

Suppose now M is a Riemann surface, and f:M—> G(m,N) is a smooth

immersion inducing the metric ds2M . Locally

hi(1.3) ds2M = dd,

2
(I A) dOM = icoAd,
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where 6 is a local unitary coframe on M and co is the real-valued connection

form associated to the metric ds\.. AlsoM

(1.5) dto= -KdAd,

Mwhere K is the Gaussian curvature of ds

Now assume that fr is a pseudo-holomorphic map from M to G(m,N)

generated by the directrix /. We first note that the pseudo-holomorphic se-

quence (0.1) generated by / must terminate after finite steps. To see this it

suffices to show that the f. 's in the sequence are mutually orthogonal. However

this follows by an easy induction argument from the fact that dd (f) c fl'■, [16],

and that f0 = f is holomorphic. For notational simplicity we may assume that

/ is linearly full so that N = J2J=0 m¡. Choose a suitable local unitary frame

e along /, where

(1.6)

and e

(eox, ... ,e0mo ,exx, ... ,eXm¡ >ekmJ

n ,ejm   span fi for 0 < j < k , and let <p = e*(W). Then

n   -xj    o

(1.7)

xoxe
o xx2e

o

-xX2e
<p2

<Pk-\

xk-\,kd

o

-Xk-\Jce

<pk

where tp¡ are u(m.)-valued 1-forms,

(1.8) Xjj+i

;,j+i.    jj+i
^1,1 q\,m.

JJ+l JJ+1
^m;. .   1 ^w'my+i ,1        'IfflJ,i ,m,

are complex mj+x x m -matrix-valued smooth functions for 0 < j < k - I

and 6 is a local unitary coframe on M with respect to the induced metric

f'ds2Jr u:>G(m,N) '

For each 0 < j < k - 1, define

(1.9) \XjJ+x\2 = trace(Xjj+x.'Xjj+x).

Since the metric may have isolated singularities, \X.  +1|    is well defined on a

connected open dense subset U of M and there

\X.r-\ ,fl \x.r,r+\ I
= 1(1.10)

Here we set \X_X 0| = \Xk k+x \ - 0.

Notice that when w;. = m for j = 0,1, ... ,k - I, \det(XjJ+x)\ are global

invariants of analytic type defined on U vanishing only at isolated points, and
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around the points where det(AT. +1) ̂  0 they satisfy [15]

(1.11) Alog|det(X.J+1)|

= mK + 2(\Xj_XJ\2 + \Xj+XJJ - 2\Xj]+x\2),

for 0 < j < k - 1. In fact it is shown in [16] that when m¡ 's are different

one can still associated with X¡ ,+1 a global invariant of analytic type which

reduces to det(X +1) when m 's are equal. But we will not use this fact later

on.

Notice also that when m = 1, if we set

(1.12) gj = \Xjj+x\ = \det(Xjj+x)\,

then (1.10) reduces to

2 2
(1-13) ¿,+¿ = 1,

and (1.11) reduces to

(1.14) Alogtf, = K + 2(q)_x + q2+x - 2q)).

Now let P: G(m,N) -► CP(m)'x be the standard Pliicker embedding [11].

Then for each i, P(f¡(p)) is an (^ )-dimensional vector defined up to a mul-

tiple. Also, for 0 < j < k set

Fj = P(f0)AP(fx)A---AP(fj).

[Fj] is a holomorphic map from M to CPL^j)"x , where

W)=\     f

called the 7'th associated curve of / ; when m = 1, this is just the standard

jth associated curve of the holomorphic curve / in CPN~ ' and the pull-back

metric by F¡ can be expressed as [1]

(1.15) F* ds2 ,* ,_, =q26ë.

Finally we define n ■_,   : M —> CP      , where

(1.16) N(j) = L(j-l)L(j)-l,

for 1 < j < k by letting

(1.17) rlj_x.(p) = [Fj_x(p)®Fj(p)].

It is easy to check that this is a well-defined holomorphic curve in CPN^ . We

will call it the ;'th lifting map of /, which will play an important role in our

analysis in the sequel.
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2.  NONEXISTENCE OF PSEUDO-HOLOMORPHIC CURVES IN   G(m, N)

WITH NONPOSITIVE CONSTANT CURVATURE

Without loss of generality one may assume that the metrics induced by

pseudo-holomorphic curves are nonsingular on M, since the following argu-

ment is local.

A nonconstant holomorphic curve in a complex projective space is a pseudo-

holomorphic curve of position zero. For such a curve one has \X0 ,|2 = 1 by

(1.10). Suppose now that the holomorphic curve has constant curvature. Then

by (1.10) all \Xj■ j+x\ are constant, and hence K = 4/N0 for some positive

integer.

Now assume that fr is a pseudo-holomorphic curve of position r with con-

stant Gaussian curvature K generated by a holomorphic curve / in G(m,N).

If r = 0, f0 = f is holomorphic. Via the standard Pliicker embedding P,

Pof is a holomorphic curve in CP'"      with the same constant curvature K.

Therefore K = 4/N0 > 0 by the above remark.

If r > 0, let nr_x be the rth lifting map defined by (1.17) and let e be the

local orthonormal frame defined by (1.6). Then locally

(2.1) nr_Xr = [(eox A • • ■ Ac,,.,, mri)<8> (eox A ■ • • r\erm)].

By (1.7), (1.8), (1.9), (1.10) and Maurer-Cartan structure equations, one gets

(2.2)

d{(eox A • • • A e(r_0,m,_,) ® (eoi A ' • • A erm))

= (^tracep, + ^traceçz,   {(«?„, A ■ • • Aí(r_1)Ai)® (eox A • • 'A^)}
\ ;=0 (=0 /

m,   f"r-l

+EE C1 'r0{(eoiA • • •A Vn,(i-i)A en
i=\ t=\

A Vl).('+1) A " ' A Vl)*-, ) ® ^01 A • • • A ermr))

+ EE<r1ô^o,A-Av.),m,l)
1=1 (=1

9 (eox A ■ • • A erAi_X) A e(r+x)i A er(i+X) A • ■ • A erJ}

and hence
(m, mr_i mr+,  m, \

i=i /=i i=i /=i       /

= (l^_, / + l^r,+1 I2)öö = ee = fïds2G{mN).

Therefore the pull-back metrics induced by fr and by the lifting map nr_, are

identical, and in particular, their Gaussian curvatures are equal. Since nr_x r

is holomorphic, one infers K = 4/NQ for some positive integer N0 . Thus one

can conclude the following.
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Theorem 1. There does not exist any nonconstant (local) pseudo-holomorphic

curve of nonpositive constant Gaussian curvature in G(m,N).

Corollary 1. All minimal tori of constant curvature in S" are not pseudo-holo-

morphic, when they are regarded as curves in CP" via the standard embedding

of Sn into CP" .

Minimal tori of constant curvature in S" have been classified in [2, 13].

These surfaces are of degree zero when imbedded in CP", which provide a

large class of examples verifying that Eells and Woods' nonzero degree condition

mentioned in the introduction cannot be dropped. One also establishes the

following proposition.

Proposition 1. The holomorphic liftings of two isometric pseudo-holomorphic

curves in G(m,N) must be unitarily equivalent.

Proof. Use the fact that two isometric holomorphic curves in a complex pro-

jective space are unitarily congruent.   D

3. Rigidity of pseudo-holomorphic curves of

positive constant curvature in cp"

Restricting to pseudo-holomorphic curves of positive constant curvature in

CP", where now N = n + 1,  m = 1, and N(j) = (*)(,+,) - 1, classical

examples are the Veronese curves V : CP  —» CPm c CP" given by

VJ(z,w)] =
m\        r,

z
ml

whose curvatures are 4/m for 0 < m < n. The following theorem says that

they generate all pseudo-holomorphic curves of constant curvature in CP".

Theorem 2. Let M be a simply connected Riemann surface not necessarily

closed, and let f:M—> CP" be a pseudo-holomorphic curve of constant cur-

vature. Then the curve is unitarily equivalent to an open subset of a pseudo-

holomorphic curve generated by some Veronese curve in a linear subspace of

CP" after reparameterization.

Proof. Notation as in §1. Let fr be a pseudo-holomorphic curve in CP" of

position r with constant curvature K. Without loss of generality, we may as-

sume that fr is linearly full. As has been shown in §2, K = 4/N0 for some

positive integer NQ, which is also the curvature for the metric n*_x rdscpNir).

Since nr_, r is holomorphic, by the theorem of Calabi nr_, r is unitarily equiv-

alent to a portion of VN , a Veronese curve in a linear subspace of CPN{r) after

reparameterization.

Let Fr = (F^,FX, ... ,F^)-') and Fr_x = (F?_x,Frx_x, ... iF¡p~l) be lo-

cal lifts of Fr and Fr_, respectively, where Fr and F' x are local holomorphic
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functions for 0 < t < (r^) - 1 , and 0 < i < (Nr) - 1 . Then

(3.1) ñr-y.

r+1

= Fr®Fr_

-(FoF° F°Fi      FiFi      Fcr,)-iF(r)-iN
— y* r * r-l'1 r * r-l> ■•■ 'rrrr-\> ••■ 'rr *7-l      >

is a local lift of nr_x r. Since nr_x r and VN  are unitarily equivalent,

(3-2) *r-l, = ^-V*.

where /z is a nowhere vanishing local holomorphic function, A is a suitable con-

stant unitary matrix, and VNq is the standard lift of VN   in CNo+x C C^^1 .

Comparing components of both sides of (3.2) one sees

(3.3) F'rFJr_x(z) = Pii(z)h(z),

where P'J are polynomials in z for 0 < i < (r^,) - 1 and 0 < y < (Nr) - 1.
.oro

Without loss of generality, one may assume that Fr Fr_ x^0. Then

(3.4)
pi F'F°rr _     r    r-l

Fo FoFo
1 r L r lr-\

PÍfih PÍfi

P°'°h ~ P°'°

and

(3.5)

so

(3.6)

and

(3.7)

r-l

r-\ 1 r rr-\

P°'Jh

P°>°h

Fr_x=[(h.P0fi,h.P°\...,h.P°W-X)]

Fr = [(P0fi,PXfi,...,P^-Xfi)].

Thus one may assume further that

,0,0
r-l (hP"'\hP

0,1
,hP

0,(^-1
(3.8)

and

(3.9) Fr = (P0ß,Px'°,...,P^-X'°).

For v = (v0,vx, ... ,vL) in CL+X, define \\v\\2 = J2f=0 |w,|2. Then by (3.2)

one gets

(3.10) ||zL_,/ = \\A ■ VNf\h\2 = \\VNf\h\2 = (l+ \z\2f°\h\2.

On the other hand,

E i^'V(3.11) i^-,/ = |ai2| E \p0j\2
7=0 J
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SO

(3.12)
/(7H

d + \z\2f°= [ ei^'2
7=0

E i^Y

Since functions on both sides of (3.12) are polynomials in variables z and z,

where 1 +■ \z\   is an irreducible polynomial, one concludes

(3.13) E |^0j|2 = C,(1 + |z|Y,2,V,

7=0

and

(3.14) E   \PJ'°\2 = C2(l + \z\2f\
7=0

where C, and C2 are positive constants and Nx, N2 are nonnegative integers

with Nx+ N2 = N0. Therefore,

(3.15)

and

(3.16)

\Fr_x\\2 = Cx\h\2(l + \z\2f\

||FJ2 = C2(l + |z|Y2

Now compute the metrics in terms of local coordinates. By (3.8), (3.9), (3.15)

and (3.16) one gets

(3.17)
,. ,, 2       .    a2 loggia II2),, ,2
Fr-MsCP(»)-A = —om—|i/z|

^1 U   I2
\dz\ .

d + \z\2)2

(3.18)

and

(3.19)

Therefore

(3.20)

and

(3.21)

r.,.2 .      a2\og(\\Fr\\2)IJ_i2 N.
Fids    (n\_A =-        r—\dz\   = -

r v    cpw    ' dzdz       '     ' (l + lzr)
Hä\dz\

.        , , 2         .       ̂ iQgdl^-.JI2),,   .2
%-X,r(dsCptHr)) = -^=-\dz\

-^—\dz\2 = ee.
(i + kh

N,
F* Ads'  n_t) = -A60r-iv    c/)(j  i/      yy

K(d¡¡1 (")-)" ^red-
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Comparing (3.20) and (3.21) with (1.15), one has

(3-22) 1r-i = >/ÑjÑ0

and

(3-23) Vr = sJN2/No-

By ( 1.14) all qj are locally constant. Since q. are continuous, they are globally

constant, and K = 4/(2r(n - r) + n). In particular, q0 is constant. But then

CP" >(3-24) fds2cp„ = q¡fr>dsi

and with this metric / is a holomorphic curve with constant curvature K = 4/n

on M. The Theorem of Calabi now infers that / is unitarily equivalent to a

portion of the Veronese curve Vn in CP" . Pushing / down to fr the result

follows.   D

As an immediate corollary we recover Calabi's theorem on the rigidy of min-

imal 2-spheres of constant curvature in «-spheres.

Corollary 2. The only minimal 2-spheres of constant curvature in a standard

n-sphere are (real) Veronese curves, up to orthogonal equivalence.

Proof. Embed the Az-sphere into CP" in the standard way, and notice that the

minimal 2-spheres are now pseudo-holomorphic in CP" . By Theorem 2 they

are generated by the Veronese curves in CP" . The rest of the proof proceeds

as in [1].   D

4. Holomorphic curves in (7(2,4) with constant curvature 2

Holomorphic curves in (7(2,4) have been studied by P. Griffiths [10] and by

G. Jensen [12] in details. In this final section, we are going to follow Jensen's

work to classify all holomorphic maps from S to (7(2,4) with constant cur-

vature 2, thus showing that Theorem 2 is no longer true for a general G(m, N).

In the following computation we will repeatedly use Maurer-Cartan structure

equations without mentioning; details can be found in [12].

Let f be a holomorphic immersion from S2 into (7(2,4) and let e be a

local unitary frame along / such that (1.7) becomes

>ll     ?12     _/i^       °_"

<p2x    <p22      0      -t26

tx6     0      <p„      <p34
o   t2e   tp43    <p44 _

where /, > t2 > 0, and 6 is the unitary coframe with respect to the metric

fds2J    "^(2,4) •

If rank df=2, then t2 / 0 and / is a pseudo-holomorphic curve of

positive zero in (7(2,4). Since Gaussian curvature K = 2, txt2 is constant by
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2 /iñ       /.2   ,   2sf,-7¡    v. J.   ,   ,2
[15]. On the other hand fdsG{2A) = 66 = (t\ + t2)66, then t\ + t2 = 1. Thus

0 < t2 < tx < 1 are constant.

If tx = t2, by [12] / is locally, hence by a standard monodromy argument,

globally equivalent to the curve h : S  = CP -» (7(2,4) defined by

(4.2)
z    I2

w   I2

where z,w gC and /2 is the 2x2 identity matrix.

Now assume that r, <t2, one can take exterior derivatives on both sides of

equations tp4X = 0 and tpJ2 = 0 to get

(4.3) (t2tp2X-txtp43)A6 = 0

and

(4.4) (tx<px2-t2tp,4)A6 = 0,

then

(4.5) t2<p2x-tx<p4i = y6

and

(4.6) txtpX2-t2tpi4 = z6,

where y and z are locally defined smooth functions, while \y\ and \z\ are

globally defined on S .

Taking exterior derivatives on both sides of equations tpJX = tx6 and q>42 =

t26, one obtains

(4.7) d(tx6) = tx(<pxx-<pi3)A6

and

(4.8) d(t26) = t2(tp22-tp44)A6.

Using (1.4), (4.7) and (4.8) and observing that ico, <pxx, tp22, tpi3 and tp44

are purely imaginary forms, one has

(4.9) i to = tp,, - <p33 = tp22 - tp44.

It then follows from taking exterior derivatives on both sides of (4.5) and (4.6)

that

(4.10) [dy + y(ito-tpxx+tp22)]A6 = 0

and

(4.11) [dz + z(ito + tpxx-tp22)]A6 = 0.

By a lemma in [5], \y\ and \z\ are of analytic type. In particular, either they

are identically zero or they only vanish at finitely many points. If yz were not
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identically zero, then via a formula in [8], around the points where yz did not

vanish, one would get from (4.10), (4.11) and (1.5)

(4.12) AlogLvz| = 2/s: = 4>0.

Using the maximal principle agument as in [15], one then could conclude

that \yz\ must be constant, which would lead to a contradiction since then

Alog|yz| = 0. Hence yz is identically zero.

If z = 0, then taking exterior derivatives on both sides of (4.9) and using

(4.5), (4.6) and (1.5), one has \y\ = t2 - t2.  By a suitable choice of a local
2 J

unitary frame, one can take y = tx - t2.

Thus by [12], / is unitarily equivalent to the curve h: CPX -> (7(2,4) de-

fined by

z zW(cos \p - sin xp)
2 2

- zw (cos \p -sin iji)      \z\  +\w\ sin2iv/

-zw(cosy/ + sini//) -|w| cos2^

w -zw(cos y/- sin y/)

where y/ is defined by

t, - i-,
(4.14) tanz/ = J-¿,        l>?,>/2>0.

tx +12

The same argument applies to the case when y = 0. In that case, / is unitarily

equivalent to the curve h : CP  —* G(2,4) defined by

|z|2- |w;|2sin2xF ztzj(cos4,-l-sinlr')"

- zIiJ(cos 4* + sin 4*) z2

~zw (cos *F + sin *F) w

-\w\ cos24* zw(cos*¥ - sin4*)

where 4* is defined in (4.14). Thus, we cover the case when t2 ^ 0, i.e., all

pseudo-holomorphic curves of position zero in (7(2,4) with curvature 2.

Now assume that t2 = 0, then tx = 1 and rank df=l. Taking exterior

derivatives on both sides of equations <p4x =0, tp32 = 0 and tp3x = 6, one gets

(4.16) ito = tpxx-<p33,

(4.17) <P4i = z6

and

(4.18) <Pn = ye,

where again \z\ and |y| are well defined and are functions of analytic type on

S2.

Take exterior derivative of (4.16), then

(4.19) |v|2 + |z|2 = l.

(4.13)

(4.15)
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If y t¿ 0, by taking exterior derivative of (4.18), the same argument as above

shows that

(4.20) Alog\y\ = 4(l-\y\¿)>0

except for finitely many points on S . Then again \y\ is constant, and therefore

a suitable choice of the unitary frame e makes y = 1. So by [ 12] / is unitarily

equivalent to h : CP  —► (7(2,4) defined by

(4.21)

i    |2       i     |2
\z\   - \w\

-\/2zw

\fl7zw
0

\f2zw
2

z
2

w

0

If however y = 0 and z = 1, then / is unitarily equivalent to h : CP

(7(2,4) defined by
2

(4.22)

0
0        1

\f2zw   0
w2      0

In (4.13) if tx = t2, one gets a curve unitarily congruent to the one defined by

(4.2), whereas if t2 = 0 it gives a curve unitarily congruent to the one defined

by (4.22). Likewise in (4.15) if t2 = 0, one obtains a curve unitarily congruent

to that defined by (4.21). Therefore all these curves can be uniformly written

as in (4.13) and (4.15) by letting 0 < ip < n/4 in (4.13) and 0 < ip < n/4

in (4.15). Since each of them has invariants different from those of the others,

they are not unitarily equivalent. In summary, one has

Theorem 3. There are two families of holomorphic curves with constant curvature

2 from S into G(2,4), which are not unitarily equivalent, and any holomorphic

curve of constant curvature 2 from S into (7(2,4) must be unitarily equivalent

to exactly one of them.
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