Cyclic extensions of $K(\sqrt {-1})/K$
HTML articles powered by AMS MathViewer
- by Jón Kr. Arason, Burton Fein, Murray Schacher and Jack Sonn PDF
- Trans. Amer. Math. Soc. 313 (1989), 843-851 Request permission
Abstract:
In this paper the height ${\text {ht}}(L/K)$ of a cyclic $2$-extension of a field $K$ of characteristic $\ne 2$ is studied. Here ${\text {ht}}(L/K) \geq n$ means that there is a cyclic extension $E$ of $K,E \supset L$, with $[E:L] = {2^n}$. Necessary and sufficient conditions are given for ${\text {ht}}(L/K) \geq n$ provided $K(\sqrt { - 1})$ contains a primitive ${2^n}$th root of unity. Primary emphasis is placed on the case $L = K(\sqrt { - 1})$. Suppose ${\text {ht}}(K(\sqrt { - 1})/K) \geq 1$. It is shown that ${\text {ht}}(K(\sqrt { - 1})/K) \geq 2$ and if $K$ is a number field then ${\text {ht}}(K(\sqrt { - 1})/K) \geq n$ for all $n$. For each $n \geq 2$ an example is given of a field $K$ such that ${\text {ht}}(K(\sqrt { - 1})/K) \geq n$ but ${\text {ht}}(K(\sqrt { - 1})/K) \ngeq n + 1$.References
-
A. A. Albert, Modern higher algebra, Univ. of Chicago Press, Chicago, 1937.
- E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335
- Françoise Bertrandias and Jean-Jacques Payan, $\Gamma$-extensions et invariants cyclotomiques, Ann. Sci. École Norm. Sup. (4) 5 (1972), 517–543 (French). MR 337882, DOI 10.24033/asens.1236
- Joseph E. Carroll, On determining the quadratic subfields of $Z_{2}$-extensions of complex quadratic fields, Compositio Math. 30 (1975), no. 3, 259–271. MR 374082
- J. E. Carroll and H. Kisilevsky, Initial layers of $Z_{1}$-extensions of complex quadratic fields, Compositio Math. 32 (1976), no. 2, 157–168. MR 406970
- Burton Fein, Basil Gordon, and John H. Smith, On the representation of $-1$ as a sum of two squares in an algebraic number field, J. Number Theory 3 (1971), 310–315. MR 319940, DOI 10.1016/0022-314X(71)90005-9
- I. Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR 0393100
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776, DOI 10.1090/surv/004
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 313 (1989), 843-851
- MSC: Primary 12F10; Secondary 11R20
- DOI: https://doi.org/10.1090/S0002-9947-1989-0929665-2
- MathSciNet review: 929665