Extending homeomorphisms and applications to metric linear spaces without completeness
HTML articles powered by AMS MathViewer
- by Tadeusz Dobrowolski
- Trans. Amer. Math. Soc. 313 (1989), 753-784
- DOI: https://doi.org/10.1090/S0002-9947-1989-0930078-8
- PDF | Request permission
Abstract:
A method of extending homeomorphisms between compacta metric spaces is presented. The main application is that homeomorphisms between compacta of an infinite-dimensional locally convex metric linear space extend to the whole space. A lemma used in the proof of this fact together with the method of absorbing sets is employed to show that every $\sigma$ -compact normed linear space is homeomorphic to a dense linear subspace of a Hilbert space. A discussion of the relative topological equivalence of absorbing sets in noncomplete spaces is included. The paper is concluded with some controlled versions of an isotopy extension theorem.References
- R. D. Anderson, On sigma-compact subsets of infinite-dimensional spaces, unpublished manuscript.
- R. D. Anderson and John D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283–289. MR 258064, DOI 10.1090/S0002-9939-1970-0258064-5
- C. Bessaga and A. Pełczyński, The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear metric spaces and convex sets, Fund. Math. 69 (1970), 153–190. MR 273347, DOI 10.4064/fm-69-2-153-190
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46–51. MR 244973, DOI 10.1090/S0002-9939-1969-0244973-1
- Doug Curtis, Tadeusz Dobrowolski, and Jerzy Mogilski, Some applications of the topological characterizations of the sigma-compact spaces $l^{2}_{f}$ and $\Sigma$, Trans. Amer. Math. Soc. 284 (1984), no. 2, 837–846. MR 743748, DOI 10.1090/S0002-9947-1984-0743748-7
- T. Dobrowolski, Smooth and $\textbf {R}$-analytic negligibility of subsets and extension of homeomorphisms in Banach spaces, Studia Math. 65 (1979), no. 2, 115–139. MR 557487, DOI 10.4064/sm-65-2-103-114
- T. Dobrowolski, On extending mappings into nonlocally convex linear metric spaces, Proc. Amer. Math. Soc. 93 (1985), no. 3, 555–560. MR 774022, DOI 10.1090/S0002-9939-1985-0774022-7
- Tadeusz Dobrowolski, The compact $Z$-set property in convex sets, Topology Appl. 23 (1986), no. 2, 163–172. MR 855456, DOI 10.1016/0166-8641(86)90038-6
- T. Dobrowolski and J. Mogilski, Sigma-compact locally convex metric linear spaces universal for compacta are homeomorphic, Proc. Amer. Math. Soc. 85 (1982), no. 4, 653–658. MR 660623, DOI 10.1090/S0002-9939-1982-0660623-0
- T. Dobrowolski and H. Toruńczyk, Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), no. 3, 229–235. MR 623731, DOI 10.1016/0166-8641(81)90001-8
- Herman Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195–210. MR 173243, DOI 10.2307/1970614 T. Homma, On the embedding of compacta in manifolds, Yokohama Math. J. 10 (1962), 5-10.
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- Ernest Michael, Convex structures and continuous selections, Canadian J. Math. 11 (1959), 556–575. MR 109344, DOI 10.4153/CJM-1959-051-9 M. A. Štanko, The embedding of compacta in euclidean space, Mat. Sb. 12 (1970), 234-254.
- H. Toruńczyk, Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 119–126 (English, with Russian summary). MR 264602
- H. Toruńczyk, Smooth partitions of unity on some non-separable Banach spaces, Studia Math. 46 (1973), 43–51. MR 339255, DOI 10.4064/sm-46-1-43-51
- H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of $l_{2}$-manifolds, Fund. Math. 101 (1978), no. 2, 93–110. MR 518344, DOI 10.4064/fm-101-2-93-110
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247–262. MR 611763, DOI 10.4064/fm-111-3-247-262
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 313 (1989), 753-784
- MSC: Primary 57N17; Secondary 54C20, 58B10
- DOI: https://doi.org/10.1090/S0002-9947-1989-0930078-8
- MathSciNet review: 930078