Orbital parameters for induced and restricted representations
HTML articles powered by AMS MathViewer
- by Ronald L. Lipsman
- Trans. Amer. Math. Soc. 313 (1989), 433-473
- DOI: https://doi.org/10.1090/S0002-9947-1989-0930083-1
- PDF | Request permission
Abstract:
General formulas for the spectral decomposition of both induced and restricted representations are laid out for the case of connected Lie groups $H \subset G$. The formulas—which detail the actual spectrum, the multiplicits, and the spectral measure—are in terms of the usual parameters in the so-called orbit method. A proof of these formulas is given in the nilpotent situation. The proof is much simpler than a previously obtained proof using nilpotent algebraic geometry. It is also capable of generalization to nonnilpotent groups. With that in mind, many new examples are presented for semisimple and symmetric homogeneous spaces. Also, a start is made in the case of exponential solvable homogeneous spaces with the treatment of both normal and conormal subgroups.References
- L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI 10.1007/BF01389744
- L. Corwin, F. P. Greenleaf, and G. Grélaud, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc. 304 (1987), no. 2, 549–583. MR 911085, DOI 10.1090/S0002-9947-1987-0911085-6
- L. Corwin and F. P. Greenleaf, Complex algebraic geometry and calculation of multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc. 305 (1988), no. 2, 601–622. MR 924771, DOI 10.1090/S0002-9947-1988-0924771-X
- Lawrence Corwin and Frederick P. Greenleaf, Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups, Pacific J. Math. 135 (1988), no. 2, 233–267. MR 968611
- Michel Duflo, Sur les extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. Sci. École Norm. Sup. (4) 5 (1972), 71–120 (French). MR 302823 —, Construction de représentations unitaires d’un groupe de Lie, Harmonic Analysis and Group Representations, C.I.M.E, 1982, pp. 129-222.
- Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153–213 (French). MR 688348, DOI 10.1007/BF02392353 G. Grélaud, Desintégration de représentations induites d’un groupe de Lie résoluble exponentiel, C.R. Acad. Sci. Paris 277 (1973), 327-330.
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Adam Kleppner and Ronald L. Lipsman, The Plancherel formula for group extensions. I, II, Ann. Sci. École Norm. Sup. (4) 5 (1972), 459–516; ibid. (4) 6 (1973), 103–132. MR 342641
- Ronald L. Lipsman, Characters of Lie groups. II. Real polarizations and the orbital-integral character formula, J. Analyse Math. 31 (1977), 257–286. MR 579006, DOI 10.1007/BF02813305
- Ronald L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures Appl. (9) 59 (1980), no. 3, 337–374. MR 604474
- Ronald L. Lipsman, Orbit theory and representations of Lie groups with co-compact radical, J. Math. Pures Appl. (9) 61 (1982), no. 1, 17–39. MR 664340
- Ronald L. Lipsman, Harmonic induction on Lie groups, J. Reine Angew. Math. 344 (1983), 120–148. MR 716251, DOI 10.1515/crll.1983.344.120
- Ronald L. Lipsman, Solvability of invariant differential operators with variable coefficients, Comm. Partial Differential Equations 10 (1985), no. 11, 1261–1316. MR 807830, DOI 10.1080/03605308508820407
- Ronald L. Lipsman, Harmonic analysis on nonsemisimple symmetric spaces, Israel J. Math. 54 (1986), no. 3, 335–350. MR 853458, DOI 10.1007/BF02764962
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- L. Pukánszky, On the unitary representations of exponential groups, J. Functional Analysis 2 (1968), 73–113. MR 0228625, DOI 10.1016/0022-1236(68)90026-8
- L. Pukanszky, Unitary representations of Lie groups with cocompact radical and applications, Trans. Amer. Math. Soc. 236 (1978), 1–49. MR 486313, DOI 10.1090/S0002-9947-1978-0486313-9
- Robert S. Strichartz, Harmonic analysis on Grassmannian bundles, Trans. Amer. Math. Soc. 296 (1986), no. 1, 387–409. MR 837819, DOI 10.1090/S0002-9947-1986-0837819-6
- Michèle Vergne, Étude de certaines représentations induites d’un groupe de Lie résoluable exponentiel, Ann. Sci. École Norm. Sup. (4) 3 (1970), 353–384 (French). MR 279243
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 313 (1989), 433-473
- MSC: Primary 22E27
- DOI: https://doi.org/10.1090/S0002-9947-1989-0930083-1
- MathSciNet review: 930083