## A characterization of nonchaotic continuous maps of the interval stable under small perturbations

HTML articles powered by AMS MathViewer

- by D. Preiss and J. Smítal
- Trans. Amer. Math. Soc.
**313**(1989), 687-696 - DOI: https://doi.org/10.1090/S0002-9947-1989-0997677-9
- PDF | Request permission

## Abstract:

Recent results of the second author show that every continuous map of the interval to itself either has every trajectory approximable by cycles (sometimes this is possible even in the case when the trajectory is not asymptotically periodic) or is $\varepsilon$-chaotic for some $\varepsilon > 0$. In certain cases, the first property is stable under small perturbations. This means that a perturbed map can be chaotic but the chaos must be small whenever the perturbation is small. In other words, there are nonchaotic maps without "chaos explosions". In the paper we give a characterization of these maps along with some consequences. Using the main result it is possible to prove that generically the nonchaotic maps are stable.## References

- Marcy Barge and Joe Martin,
*Dense periodicity on the interval*, Proc. Amer. Math. Soc.**94**(1985), no. 4, 731–735. MR**792293**, DOI 10.1090/S0002-9939-1985-0792293-8 - Louis Block,
*Simple periodic orbits of mappings of the interval*, Trans. Amer. Math. Soc.**254**(1979), 391–398. MR**539925**, DOI 10.1090/S0002-9947-1979-0539925-9 - Hsin Chu and Jin Cheng Xiong,
*A counterexample in dynamical systems of the interval*, Proc. Amer. Math. Soc.**97**(1986), no. 2, 361–366. MR**835899**, DOI 10.1090/S0002-9939-1986-0835899-0 - Pierre Collet and Jean-Pierre Eckmann,
*Iterated maps on the interval as dynamical systems*, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 1980 edition. MR**2541754**, DOI 10.1007/978-0-8176-4927-2
W. de Melo and S. van Strien, - J. Harrison,
*Wandering intervals*, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 154–163. MR**654888** - K. Janková and J. Smítal,
*A characterization of chaos*, Bull. Austral. Math. Soc.**34**(1986), no. 2, 283–292. MR**854575**, DOI 10.1017/S0004972700010157 - T. Y. Li and James A. Yorke,
*Period three implies chaos*, Amer. Math. Monthly**82**(1975), no. 10, 985–992. MR**385028**, DOI 10.2307/2318254 - M. Misiurewicz and J. Smítal,
*Smooth chaotic maps with zero topological entropy*, Ergodic Theory Dynam. Systems**8**(1988), no. 3, 421–424. MR**961740**, DOI 10.1017/S0143385700004557 - Zbigniew Nitecki,
*Maps of the interval with closed periodic set*, Proc. Amer. Math. Soc.**85**(1982), no. 3, 451–456. MR**656122**, DOI 10.1090/S0002-9939-1982-0656122-2 - O. M. Šarkovs′kiĭ,
*Fixed points and the center of a continuous mapping of the line into itself*, Dopovidi Akad. Nauk Ukraïn. RSR**1964**(1964), 865–868 (Ukrainian, with Russian and English summaries). MR**0165178** - O. M. Šarkovs′kiĭ,
*On cycles and the structure of a continuous mapping*, Ukrain. Mat. Ž.**17**(1965), no. 3, 104–111 (Russian). MR**0186757** - O. M. Šarkovs′kiĭ,
*On a theorem of G. D. Birkhoff*, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A**1967**(1967), 429–432 (Ukrainian, with Russian and English summaries). MR**0212781** - J. Smítal,
*Chaotic functions with zero topological entropy*, Trans. Amer. Math. Soc.**297**(1986), no. 1, 269–282. MR**849479**, DOI 10.1090/S0002-9947-1986-0849479-9 - J. Smítal and K. Smítalová,
*Structural stability of nonchaotic difference equations*, J. Math. Anal. Appl.**90**(1982), no. 1, 1–11. MR**680860**, DOI 10.1016/0022-247X(82)90040-3 - M. B. Vereĭkina and A. N. Sharkovskiĭ,
*Recurrence in one-dimensional dynamical systems*, Approximate and qualitative methods of the theory of functional differential equations, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1983, pp. 35–46 (Russian). MR**753681**

*A structure theorem in one dimensional dynamics*, Delft University of Technology, 1986, preprint.

## Bibliographic Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**313**(1989), 687-696 - MSC: Primary 58F08; Secondary 26A18, 54H20, 58F10
- DOI: https://doi.org/10.1090/S0002-9947-1989-0997677-9
- MathSciNet review: 997677