On invariants of graphs with applications to knot theory
HTML articles powered by AMS MathViewer
- by Kunio Murasugi
- Trans. Amer. Math. Soc. 314 (1989), 1-49
- DOI: https://doi.org/10.1090/S0002-9947-1989-0930077-6
- PDF | Request permission
Abstract:
To each weighted graph $\Gamma$, two invariants, a polynomial ${P_\Gamma }(x,y,z)$ and the signature $\sigma (\Gamma )$, are defined. The various partial degress of ${P_\Gamma }(x,y,z)$ and $\sigma (\Gamma )$ are expressed in terms of maximal spanning graphs of $\Gamma$. Furthermore, one unexpected property of Tutte’s dichromate is proved. These results are applied to knots or links in ${S^3}$.References
- Claude Berge, Graphs and hypergraphs, North-Holland Mathematical Library, Vol. 6, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Translated from the French by Edward Minieka. MR 0357172
- Norman Biggs, Algebraic graph theory, Cambridge Tracts in Mathematics, No. 67, Cambridge University Press, London, 1974. MR 0347649
- Mehdi Behzad and Gary Chartrand, Introduction to the theory of graphs, Allyn and Bacon, Inc., Boston, Mass., 1971. MR 0432461
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- C. McA. Gordon and R. A. Litherland, On the signature of a link, Invent. Math. 47 (1978), no. 1, 53–69. MR 500905, DOI 10.1007/BF01609479
- C. McA. Gordon, R. A. Litherland, and K. Murasugi, Signatures of covering links, Canadian J. Math. 33 (1981), no. 2, 381–394. MR 617628, DOI 10.4153/CJM-1981-032-3
- Pierre de la Harpe, Michel Kervaire, and Claude Weber, On the Jones polynomial, Enseign. Math. (2) 32 (1986), no. 3-4, 271–335. MR 874691
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Louis H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), no. 3, 195–242. MR 935433, DOI 10.2307/2323625
- Kunio Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422. MR 171275, DOI 10.1090/S0002-9947-1965-0171275-5
- Kunio Murasugi, On the signature of links, Topology 9 (1970), 283–298. MR 261585, DOI 10.1016/0040-9383(70)90018-2
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory. II, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 2, 317–318. MR 898151, DOI 10.1017/S0305004100067335
- Kunio Murasugi, Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319–329. MR 922222 —, On the chromatic degree of a graph (preprint).
- Kunio Murasugi, On the signature of a graph, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 2, 107–111. MR 933223 —, On the degree of Jones polynomials (preprint). —, A property of Tutte polynomial (preprint).
- Seiya Negami, Polynomial invariants of graphs, Trans. Amer. Math. Soc. 299 (1987), no. 2, 601–622. MR 869224, DOI 10.1090/S0002-9947-1987-0869224-1
- Józef H. Przytycki, $t_k$ moves on links, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 615–656. MR 975099, DOI 10.1090/conm/078/975099 —, Positive knots have negative signature (preprint).
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR 1277811
- Lee Rudolph, Nontrivial positive braids have positive signature, Topology 21 (1982), no. 3, 325–327. MR 649763, DOI 10.1016/0040-9383(82)90014-3
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
- Morwen B. Thistlethwaite, Kauffman’s polynomial and alternating links, Topology 27 (1988), no. 3, 311–318. MR 963633, DOI 10.1016/0040-9383(88)90012-2
- Morwen B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), no. 2, 285–296. MR 948102, DOI 10.1007/BF01394334
- PawełTraczyk, $10_{101}$ has no period $7$: a criterion for periodic links, Proc. Amer. Math. Soc. 108 (1990), no. 3, 845–846. MR 1031676, DOI 10.1090/S0002-9939-1990-1031676-X
- PawełTraczyk, Nontrivial negative links have positive signature, Manuscripta Math. 61 (1988), no. 3, 279–284. MR 949818, DOI 10.1007/BF01258439
- V. G. Turaev, A simple proof of the Murasugi and Kauffman theorems on alternating links, Enseign. Math. (2) 33 (1987), no. 3-4, 203–225. MR 925987
- W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80–91. MR 61366, DOI 10.4153/cjm-1954-010-9
- Hassler Whitney, 2-Isomorphic Graphs, Amer. J. Math. 55 (1933), no. 1-4, 245–254. MR 1506961, DOI 10.2307/2371127
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 1-49
- MSC: Primary 57M25; Secondary 05C99, 57M15
- DOI: https://doi.org/10.1090/S0002-9947-1989-0930077-6
- MathSciNet review: 930077