Global solvability of the derivative nonlinear Schrödinger equation
HTML articles powered by AMS MathViewer
- by Jyh-Hao Lee
- Trans. Amer. Math. Soc. 314 (1989), 107-118
- DOI: https://doi.org/10.1090/S0002-9947-1989-0951890-5
- PDF | Request permission
Abstract:
The derivative nonlinear Schrödinger equation $(\text {DNLS})$ \[ \begin {array}{*{20}{c}} {i{q_t} = {q_{xx}} \pm {{({q^\ast }{q^2})}_x},} & {q = q(x,t), i = \sqrt { - 1} ,{q^\ast }(z) = \overline {q(z)} ,} \\ \end {array} \] was first derived by plasma physicists [9,10]. This equation was used to interpret the propagation of circular polarized nonlinear Alfvén waves in plasma. Kaup and Newell obtained the soliton solutions of $\text {DNLS}$ in 1978 [5]. The author obtained the local solvability of $\text {DNLS}$ in his dissertation [6]. In this paper we obtain global existence (in time $t$) of Schwartz class solutions of $\text {DNLS}$ if the ${L^2}$-norm of the generic initial data $q(x,0)$ is bounded.References
- R. Beals and R. Coifman, Scattering, transformations spectrales et équations d’évolution non linéaires, Goulaouic-Meyer-Schwartz Seminar, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. XXII, 10 (French). MR 657992
- R. Beals and R. R. Coifman, Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math. 37 (1984), no. 1, 39–90. MR 728266, DOI 10.1002/cpa.3160370105
- R. Beals and R. R. Coifman, Inverse scattering and evolution equations, Comm. Pure Appl. Math. 38 (1985), no. 1, 29–42. MR 768103, DOI 10.1002/cpa.3160380103
- Robin K. Bullough and Philip J. Caudrey (eds.), Solitons, Topics in Current Physics, vol. 17, Springer-Verlag, Berlin-New York, 1980. MR 625877
- David J. Kaup and Alan C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Mathematical Phys. 19 (1978), no. 4, 798–801. MR 464963, DOI 10.1063/1.523737 J. H. Lee, Analytic properties of Zakharov-Shabat inverse scattering problem with polynomial spectral dependence of degree $1$ in the potential, Ph. D. Dissertation, Yale University, 1983.
- Jyh-Hao Lee, A Zakharov-Shabat inverse scattering problem and the associated evolution equations, Chinese J. Math. 12 (1984), no. 4, 223–233. MR 774286 —, Hamiltonian structure of soliton equations, Proc. CCNAA-AIT Seminar on Differential Equations (Taiwan, June 1985), pp. 205-214.
- Koji Mio, Tatsuki Ogino, Kazuo Minami, and Susumu Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan 41 (1976), no. 1, 265–271. MR 462141, DOI 10.1143/JPSJ.41.265 E. MjØlhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys. 16 (1976), 321-334.
- V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 107-118
- MSC: Primary 35Q20; Secondary 34A55, 34B25
- DOI: https://doi.org/10.1090/S0002-9947-1989-0951890-5
- MathSciNet review: 951890