The group of automorphisms of $L^ 1(0,1)$ is connected
HTML articles powered by AMS MathViewer
- by F. Ghahramani
- Trans. Amer. Math. Soc. 314 (1989), 851-859
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937244-6
- PDF | Request permission
Abstract:
It is shown that the group of the automorphisms of the radical convolution algebra ${L^1}(0,1)$ is connected in the operator norm topology, and thus every automorphism is of the form ${e^{\lambda d}}{e^q}$, where $\lambda$ is a complex number, $d$ is the derivation $df(x) = xf(x)$ and $q$ is a quasinilpotent derivation.References
- F. Ghahramani, The connectedness of the group of automorphisms of $L^1(0,1)$, Trans. Amer. Math. Soc. 302 (1987), no. 2, 647–659. MR 891639, DOI 10.1090/S0002-9947-1987-0891639-6
- Sandy Grabiner, Derivations and automorphisms of Banach algebras of power series, Memoirs of the American Mathematical Society, No. 146, American Mathematical Society, Providence, R.I., 1974. MR 0415321
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- Nicholas P. Jewell and Allan M. Sinclair, Epimorphisms and derivations on $L^1(0,1)$ are continuous, Bull. London Math. Soc. 8 (1976), no. 2, 135–139. MR 402507, DOI 10.1112/blms/8.2.135
- B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299–320. MR 159233, DOI 10.1112/plms/s3-14.2.299
- Herbert Kamowitz and Stephen Scheinberg, Derivations and automorphisms of $L^{1}\,(0,\,1)$, Trans. Amer. Math. Soc. 135 (1969), 415–427. MR 233210, DOI 10.1090/S0002-9947-1969-0233210-4
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 851-859
- MSC: Primary 43A20; Secondary 43A22, 46J99
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937244-6
- MathSciNet review: 937244