Stability in the isoperimetric problem for convex or nearly spherical domains in $\textbf {R}^ n$
HTML articles powered by AMS MathViewer
- by Bent Fuglede
- Trans. Amer. Math. Soc. 314 (1989), 619-638
- DOI: https://doi.org/10.1090/S0002-9947-1989-0942426-3
- PDF | Request permission
Abstract:
For convex bodies $D$ in ${{\mathbf {R}}^n}$ the deviation $d$ from spherical shape is estimated from above in terms of the (dimensionless) isoperimetric deficiency $\Delta$ of $D$ as follows: $d \leq f(\Delta )$ (for $\Delta$ sufficiently small). Here $f$ is an explicit elementary function vanishing continuously at $0$. The estimate is sharp as regards the order of magnitude of $f$. The dimensions $n = 2$ and $3$ present anomalies as to the form of $f$. In the planar case $n = 2$ the result is contained in an inequality due to T. Bonnesen. A qualitative consequence of the present result is that there is stability in the classical isoperimetric problem for convex bodies $D$ in ${{\mathbf {R}}^n}$ in the sense that, as $D$ varies, $d \to 0$ for $\Delta \to 0$. The proof of the estimate $d \leq f(\Delta )$ is based on a related estimate in the case of domains (not necessarily convex) that are supposed a priori to be nearly spherical in a certain sense.References
- Felix Bernstein, Ăber die isoperimetrische Eigenschaft des Kreises auf der KugeloberflĂ€che und in der Ebene, Math. Ann. 60 (1905), no. 1, 117â136 (German). MR 1511289, DOI 10.1007/BF01447496
- T. Bonnesen, Ăber das isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), no. 3-4, 252â268 (German). MR 1512192, DOI 10.1007/BF01556082 â, Les problĂšmes des isopĂ©rimĂštres et des isĂ©piphanes, Gauthier-Villars, Paris, 1929.
- T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer-Verlag, Berlin-New York, 1974 (German). Berichtigter Reprint. MR 0344997
- Alexander Dinghas, Bemerkung zu einer VerschĂ€rfung der isoperimetrischen Ungleichung durch H. Hadwiger, Math. Nachr. 1 (1948), 284â286 (German). MR 29205, DOI 10.1002/mana.19480010503
- Bent Fuglede, Stability in the isoperimetric problem, Bull. London Math. Soc. 18 (1986), no. 6, 599â605. MR 859955, DOI 10.1112/blms/18.6.599
- H. Hadwiger, Die isoperimetrische Ungleichung im Raum, Elem. Math. 3 (1948), 25â38 (German). MR 24641
- A. Hurwitz, Sur quelques applications gĂ©omĂ©triques des sĂ©ries de Fourier, Ann. Sci. Ăcole Norm. Sup. (3) 19 (1902), 357â408 (French). MR 1509016
- Claus MĂŒller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 0199449
- Robert Osserman, A strong form of the isoperimetric inequality in $\textbf {R}^n$, Complex Variables Theory Appl. 9 (1987), no. 2-3, 241â249. MR 923224, DOI 10.1080/17476938708814267
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 619-638
- MSC: Primary 52A40
- DOI: https://doi.org/10.1090/S0002-9947-1989-0942426-3
- MathSciNet review: 942426