Sobolev inequalities for products of powers
HTML articles powered by AMS MathViewer
- by A. Eduardo Gatto and Richard L. Wheeden
- Trans. Amer. Math. Soc. 314 (1989), 727-743
- DOI: https://doi.org/10.1090/S0002-9947-1989-0967312-4
- PDF | Request permission
Abstract:
We derive weighted Sobolev inequalities of the form ${\left \| f \right \|_{L_u^q}} \leq C{\left \| {\nabla f} \right \|_{L_v^p}}$, $f \in C_0^\infty ({{\mathbf {R}}^n})$, $1 < p \leq q < \infty$, for classes of weight functions $u$, $v$ which include $v$’s that are a finite product of certain power weights times an ${A_p}$ function.References
- L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259–275. MR 768824
- Sagun Chanillo and Richard L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), no. 5, 1191–1226. MR 805809, DOI 10.2307/2374351
- Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158, DOI 10.1080/03605308208820218
- Angel E. Gatto, Cristian E. Gutiérrez, and Richard L. Wheeden, Fractional integrals on weighted $H^p$ spaces, Trans. Amer. Math. Soc. 289 (1985), no. 2, 575–589. MR 784004, DOI 10.1090/S0002-9947-1985-0784004-1
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268 E. Sawyer and R. Wheeden, Weighted inequalities for fractional and Poisson integrals on Euclidean and homogeneous spaces (to appear).
- Jan-Olov Strömberg and Richard L. Wheeden, Fractional integrals on weighted $H^p$ and $L^p$ spaces, Trans. Amer. Math. Soc. 287 (1985), no. 1, 293–321. MR 766221, DOI 10.1090/S0002-9947-1985-0766221-X
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 727-743
- MSC: Primary 26D10; Secondary 46E35
- DOI: https://doi.org/10.1090/S0002-9947-1989-0967312-4
- MathSciNet review: 967312