## Weighted norm inequalities for the continuous square function

HTML articles powered by AMS MathViewer

- by J. Michael Wilson PDF
- Trans. Amer. Math. Soc.
**314**(1989), 661-692 Request permission

Erratum: Trans. Amer. Math. Soc.

**321**(1990), 415.

## Abstract:

We prove new weighted norm inequalities for real-variable analogues of the Lusin area function. We apply our results to obtain new: (i) weighted norm inequalities for singular integral operators; (ii) weighted Sobolev inequalities; (iii) eigenvalue estimates for degenerate Schrödinger operators.## References

- S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff,
*Some weighted norm inequalities concerning the Schrödinger operators*, Comment. Math. Helv.**60**(1985), no. 2, 217–246. MR**800004**, DOI 10.1007/BF02567411
S. Chanillo and R. L. Weeden, ${L^p}$ - Sagun Chanillo and Richard L. Wheeden,
*Some weighted norm inequalities for the area integral*, Indiana Univ. Math. J.**36**(1987), no. 2, 277–294. MR**891775**, DOI 10.1512/iumj.1987.36.36016 - Charles L. Fefferman,
*The uncertainty principle*, Bull. Amer. Math. Soc. (N.S.)**9**(1983), no. 2, 129–206. MR**707957**, DOI 10.1090/S0273-0979-1983-15154-6 - C. Fefferman and E. M. Stein,
*Some maximal inequalities*, Amer. J. Math.**93**(1971), 107–115. MR**284802**, DOI 10.2307/2373450 - C. Fefferman and E. M. Stein,
*$H^{p}$ spaces of several variables*, Acta Math.**129**(1972), no. 3-4, 137–193. MR**447953**, DOI 10.1007/BF02392215 - Robert Fefferman,
*Harmonic analysis on product spaces*, Ann. of Math. (2)**126**(1987), no. 1, 109–130. MR**898053**, DOI 10.2307/1971346 - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971** - John B. Garnett and Peter W. Jones,
*The distance in BMO to $L^{\infty }$*, Ann. of Math. (2)**108**(1978), no. 2, 373–393. MR**506992**, DOI 10.2307/1971171
R. Kerman and E. T. Sawyer, - Douglas S. Kurtz,
*Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces*, Trans. Amer. Math. Soc.**259**(1980), no. 1, 235–254. MR**561835**, DOI 10.1090/S0002-9947-1980-0561835-X - Benjamin Muckenhoupt,
*Weighted norm inequalities for classical operators*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR**545240**
M. Schechter, - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Akihito Uchiyama,
*The Fefferman-Stein decomposition of smooth functions and its application to $H^{p}(\textbf {R}^{n})$*, Pacific J. Math.**115**(1984), no. 1, 217–255. MR**762212** - J. Michael Wilson,
*Weighted inequalities for the dyadic square function without dyadic $A_\infty$*, Duke Math. J.**55**(1987), no. 1, 19–50. MR**883661**, DOI 10.1215/S0012-7094-87-05502-5 - J. Michael Wilson,
*A sharp inequality for the square function*, Duke Math. J.**55**(1987), no. 4, 879–887. MR**916125**, DOI 10.1215/S0012-7094-87-05542-6
—, ${L^p}$

*estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators*, preprint (1985).

*Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures*, preprint (1984).

*The spectrum of the Schrödinger operator*, preprint (1987).

*weighted norm inequalities for the square function*, $0 < p < 2$, Illinois J. Math, (to appear).

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**314**(1989), 661-692 - MSC: Primary 42B20
- DOI: https://doi.org/10.1090/S0002-9947-1989-0972707-9
- MathSciNet review: 972707