Weighted norm inequalities for the continuous square function
HTML articles powered by AMS MathViewer
- by J. Michael Wilson
- Trans. Amer. Math. Soc. 314 (1989), 661-692
- DOI: https://doi.org/10.1090/S0002-9947-1989-0972707-9
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 321 (1990), 415.
Abstract:
We prove new weighted norm inequalities for real-variable analogues of the Lusin area function. We apply our results to obtain new: (i) weighted norm inequalities for singular integral operators; (ii) weighted Sobolev inequalities; (iii) eigenvalue estimates for degenerate Schrödinger operators.References
- S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217–246. MR 800004, DOI 10.1007/BF02567411 S. Chanillo and R. L. Weeden, ${L^p}$ estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators, preprint (1985).
- Sagun Chanillo and Richard L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), no. 2, 277–294. MR 891775, DOI 10.1512/iumj.1987.36.36016
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- Robert Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. MR 898053, DOI 10.2307/1971346
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- John B. Garnett and Peter W. Jones, The distance in BMO to $L^{\infty }$, Ann. of Math. (2) 108 (1978), no. 2, 373–393. MR 506992, DOI 10.2307/1971171 R. Kerman and E. T. Sawyer, Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures, preprint (1984).
- Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254. MR 561835, DOI 10.1090/S0002-9947-1980-0561835-X
- Benjamin Muckenhoupt, Weighted norm inequalities for classical operators, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR 545240 M. Schechter, The spectrum of the Schrödinger operator, preprint (1987).
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Akihito Uchiyama, The Fefferman-Stein decomposition of smooth functions and its application to $H^{p}(\textbf {R}^{n})$, Pacific J. Math. 115 (1984), no. 1, 217–255. MR 762212
- J. Michael Wilson, Weighted inequalities for the dyadic square function without dyadic $A_\infty$, Duke Math. J. 55 (1987), no. 1, 19–50. MR 883661, DOI 10.1215/S0012-7094-87-05502-5
- J. Michael Wilson, A sharp inequality for the square function, Duke Math. J. 55 (1987), no. 4, 879–887. MR 916125, DOI 10.1215/S0012-7094-87-05542-6 —, ${L^p}$ weighted norm inequalities for the square function, $0 < p < 2$, Illinois J. Math, (to appear).
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 661-692
- MSC: Primary 42B20
- DOI: https://doi.org/10.1090/S0002-9947-1989-0972707-9
- MathSciNet review: 972707