## Some properties of the curve straightening flow in the plane

HTML articles powered by AMS MathViewer

- by Anders Linnér PDF
- Trans. Amer. Math. Soc.
**314**(1989), 605-618 Request permission

## Abstract:

We will explicitly compute the gradient of the total squared curvature functional on a space of closed curves. An example shows that the flow along the gradient trajectory may cause curves to develop self-intersections. We prove the existence of strictly convex curves that momentarily turn nonconvex. In conclusion we use computer graphics to illustrate how self-intersections come about.## References

- Joel Langer and David A. Singer,
*Curve straightening and a minimax argument for closed elastic curves*, Topology**24**(1985), no. 1, 75–88. MR**790677**, DOI 10.1016/0040-9383(85)90046-1 - M. Gage and R. S. Hamilton,
*The heat equation shrinking convex plane curves*, J. Differential Geom.**23**(1986), no. 1, 69–96. MR**840401** - Matthew A. Grayson,
*The heat equation shrinks embedded plane curves to round points*, J. Differential Geom.**26**(1987), no. 2, 285–314. MR**906392** - M. E. Gage,
*Curve shortening makes convex curves circular*, Invent. Math.**76**(1984), no. 2, 357–364. MR**742856**, DOI 10.1007/BF01388602
Å. Linder, - Richard S. Palais,
*The principle of symmetric criticality*, Comm. Math. Phys.**69**(1979), no. 1, 19–30. MR**547524** - Buchin Su,
*Lectures on differential geometry*, World Scientific Publishing Co., Singapore, 1980. Translated from the Chinese by K. T. Chang; With a foreword by S. S. Chern. MR**664600**

*Föreläsningar i statik*, Institutionen för Mekanik, The Royal Institute of Technology, Stockholm, 1978,.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**314**(1989), 605-618 - MSC: Primary 58E10; Secondary 53A04, 53C22, 58F17
- DOI: https://doi.org/10.1090/S0002-9947-1989-0989580-5
- MathSciNet review: 989580