## Radially symmetric solutions to a superlinear Dirichlet problem in a ball with jumping nonlinearities

HTML articles powered by AMS MathViewer

- by Alfonso Castro and Alexandra Kurepa PDF
- Trans. Amer. Math. Soc.
**315**(1989), 353-372 Request permission

## Abstract:

Let $p,\varphi :[0,T] \to R$ be bounded functions with $\varphi > 0$. Let $g:{\mathbf {R}} \to {\mathbf {R}}$ be a locally Lipschitzian function satisfying the superlinear jumping condition: (i) ${\lim _{u \to - \infty }}(g(u)/u) \in {\mathbf {R}}$ (ii) ${\lim _{u \to \infty }}(g(u)/{u^{1 + \rho }}) = \infty$ for some $\rho > 0$, and (iii) ${\lim _{u \to \infty }}{(u/g(u))^{N/2}}(NG(\kappa u) - ((N - 2)/2)u \cdot g(u)) = \infty$ for some $\kappa \in (0,1]$ where $G$ is the primitive of $g$. Here we prove that the number of solutions of the boundary value problem $\Delta u + g(u) = p(\left \| x\right \|) + c\varphi (\left \| x\right \|)$ for $x \in {{\mathbf {R}}^N}$ with $\left \| x\right \| < T,u(x) = 0$ for $\left \| x\right \| = T$ tends to $+ \infty$ when $c$ tends to $+ \infty$. The proofs are based on the "energy" and "phase plane" analysis.## References

- A. Ambrosetti and G. Prodi,
*On the inversion of some differentiable mappings with singularities between Banach spaces*, Ann. Mat. Pura Appl. (4)**93**(1972), 231–246. MR**320844**, DOI 10.1007/BF02412022 - Alfonso Castro and Alexandra Kurepa,
*Energy analysis of a nonlinear singular differential equation and applications*, Rev. Colombiana Mat.**21**(1987), no. 1, 155–166 (English, with Spanish summary). MR**968385** - Alfonso Castro and Alexandra Kurepa,
*Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball*, Proc. Amer. Math. Soc.**101**(1987), no. 1, 57–64. MR**897070**, DOI 10.1090/S0002-9939-1987-0897070-7 - Alfonso Castro and R. Shivaji,
*Multiple solutions for a Dirichlet problem with jumping nonlinearities*, Trends in the theory and practice of nonlinear analysis (Arlington, Tex., 1984) North-Holland Math. Stud., vol. 110, North-Holland, Amsterdam, 1985, pp. 97–101. MR**817476**, DOI 10.1016/S0304-0208(08)72695-1 - Alfonso Castro and R. Shivaji,
*Multiple solutions for a Dirichlet problem with jumping nonlinearities. II*, J. Math. Anal. Appl.**133**(1988), no. 2, 509–528. MR**954725**, DOI 10.1016/0022-247X(88)90420-9 - Alfonso Castro and Alan C. Lazer,
*On periodic solutions of weakly coupled systems of differential equations*, Boll. Un. Mat. Ital. B (5)**18**(1981), no. 3, 733–742 (English, with Italian summary). MR**641732** - D. G. Costa and D. G. de Figueiredo,
*Radial solutions for a Dirichlet problem in a ball*, J. Differential Equations**60**(1985), no. 1, 80–89. MR**808258**, DOI 10.1016/0022-0396(85)90121-4 - Jerry L. Kazdan and F. W. Warner,
*Remarks on some quasilinear elliptic equations*, Comm. Pure Appl. Math.**28**(1975), no. 5, 567–597. MR**477445**, DOI 10.1002/cpa.3160280502 - A. C. Lazer and P. J. McKenna,
*On the number of solutions of a nonlinear Dirichlet problem*, J. Math. Anal. Appl.**84**(1981), no. 1, 282–294. MR**639539**, DOI 10.1016/0022-247X(81)90166-9 - A. C. Lazer and P. J. McKenna,
*On a conjecture related to the number of solutions of a nonlinear Dirichlet problem*, Proc. Roy. Soc. Edinburgh Sect. A**95**(1983), no. 3-4, 275–283. MR**726879**, DOI 10.1017/S0308210500012993 - A. C. Lazer and P. J. McKenna,
*Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues*, Comm. Partial Differential Equations**10**(1985), no. 2, 107–150. MR**777047**, DOI 10.1080/03605308508820374
D. Lupo, S. Solimini and P. N. Srikanth, - Bernhard Ruf and Sergio Solimini,
*On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions*, SIAM J. Math. Anal.**17**(1986), no. 4, 761–771. MR**846387**, DOI 10.1137/0517055

*Multiplicity results for an o.d.e. problem with even nonlinearity*, Quad. Matematici (II), no. 112, Dicembre 1985.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**315**(1989), 353-372 - MSC: Primary 35J65; Secondary 35B05
- DOI: https://doi.org/10.1090/S0002-9947-1989-0933323-8
- MathSciNet review: 933323