The structure of quasimultipliers of $C^ *$-algebras
HTML articles powered by AMS MathViewer
- by Hua Xin Lin
- Trans. Amer. Math. Soc. 315 (1989), 147-172
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937248-3
- PDF | Request permission
Abstract:
Let $A$ be a ${C^\ast }$-algebra and ${A^{\ast \ast }}$ its enveloping ${W^\ast }$-algebra. Let ${\text {LM}}(A)$ be the left multipliers of $A$, ${\text {RM}}(A)$ the right multipliers of $A$ and ${\text {QM}}(A)$ the quasi-multipliers of $A$. A question was raised by Akemann and Pedersen [1] whether ${\text {QM}}(A) = {\text {LM}}(A) + {\text {RM}}(A)$. McKennon [20] gave a nonseparable counterexample. L. Brown [6] shows the answer is negative for stable (separable) ${C^\ast }$-algebras also. In this paper, we mainly consider $\sigma$-unitial ${C^\ast }$-algebras. We give a criterion for ${\text {QM}}(A) = {\text {LM}}(A) + {\text {RM}}(A)$. In the case that $A$ is stable, we give a necessary and sufficient condition for ${\text {QM}}(A) = {\text {LM}}(A) + {\text {RM}}(A)$. We also give answers for other ${C^\ast }$-algebras.References
- Charles A. Akemann and Gert K. Pedersen, Complications of semicontinuity in $C^{\ast }$-algebra theory, Duke Math. J. 40 (1973), 785–795. MR 358361
- Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama, Multipliers of $C^*$-algebras, J. Functional Analysis 13 (1973), 277–301. MR 0470685, DOI 10.1016/0022-1236(73)90036-0
- Charles A. Akemann and Frederic W. Shultz, Perfect $C^\ast$-algebras, Mem. Amer. Math. Soc. 55 (1985), no. 326, xiii+117. MR 787540, DOI 10.1090/memo/0326 L. G. Brown, Extensions of $AF$ algebras: The projection lifting problem, Proc. Sympos. Pure Math., vol. 38, Part I, Amer. Math. Soc., Providence, R.I., 1982.
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348. MR 454645, DOI 10.2140/pjm.1977.71.335 —, Closed hereditary ${C^\ast }$-algebras and the structure of quasi-multipliers, preprints. —, Semicontinuity and multipliers of ${C^\ast }$-algebras, preprint.
- Robert C. Busby, Double centralizers and extensions of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99. MR 225175, DOI 10.1090/S0002-9947-1968-0225175-5
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- J. Dixmier, On some $C^{\ast }$-algebras considered by Glimm, J. Functional Analysis 1 (1967), 182–203. MR 0213886, DOI 10.1016/0022-1236(67)90031-6 E. G. Effros, Dimensions and ${C^\ast }$-algebras, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, R.I., 1980.
- J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280. MR 164248, DOI 10.1007/BF02545788
- Helge Elbrønd Jensen, Scattered $C^*$-algebras, Math. Scand. 41 (1977), no. 2, 308–314. MR 482242, DOI 10.7146/math.scand.a-11723
- Helge Elbrønd Jensen, Scattered $C^{\ast }$-algebras. II, Math. Scand. 43 (1978), no. 2, 308–310 (1979). MR 531308, DOI 10.7146/math.scand.a-11782
- B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299–320. MR 159233, DOI 10.1112/plms/s3-14.2.299
- B. E. Johnson, A counterexample in the perturbation theory of $C^{\ast }$-algebras, Canad. Math. Bull. 25 (1982), no. 3, 311–316. MR 668947, DOI 10.4153/CMB-1982-043-4 S. Mazurkiewicz and W. Sierpinski, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 21. A. J. Lazar, On scattered ${C^\ast }$-algebras, preprint. H. Lin, The structure of quasi-multipliers of ${C^\ast }$-algebras, Ph.D. thesis, Purdue Univ., 1986.
- Kelly McKennon, The quasimultiplier conjecture, Proc. Amer. Math. Soc. 72 (1978), no. 2, 258–260. MR 507318, DOI 10.1090/S0002-9939-1978-0507318-0 G. K. Pedersen, Applications of $wea{k^\ast }$ semi-continuity in ${C^\ast }$-algebra theory, Duke Math. J. 39 (1973), 437-450.
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006 Operator Theory 15 (1986), 15-32.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 147-172
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1989-0937248-3
- MathSciNet review: 937248