The structure of some equivariant Thom spectra
HTML articles powered by AMS MathViewer
- by Steven R. Costenoble
- Trans. Amer. Math. Soc. 315 (1989), 231-254
- DOI: https://doi.org/10.1090/S0002-9947-1989-0958887-X
- PDF | Request permission
Abstract:
We show that the equivariant Thom spectra $M{O_{{{\text {Z}}_2}}}$ and $m{O_{{{\text {Z}}_2}}}$ do not split as wedges of equivariant Eilenberg-Mac Lane spectra, as they do nonequivariantly. This is done by finding two-stage Postnikov towers giving these spectra, and determining the nontrivial $k$-invariants. We also consider the question: In what sense is the spectrum $m{O_{{{\text {Z}}_2}}}$ representing unoriented bordism unique?References
- J. F. Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 483–532. MR 764596, DOI 10.1007/BFb0075584
- J. C. Alexander, The bordism ring of manifolds with involution, Proc. Amer. Math. Soc. 31 (1972), 536–542. MR 290379, DOI 10.1090/S0002-9939-1972-0290379-9
- J. M. Boardman, Cobordism of involutions revisited, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 298, Springer, Berlin, 1972, pp. 131–151. MR 0358822 S. R. Costenoble, Equivariant cobordism and $K$-theory, Ph. D. Thesis, Univ. of Chicago, 1985.
- Steven R. Costenoble, The equivariant Conner-Floyd isomorphism, Trans. Amer. Math. Soc. 304 (1987), no. 2, 801–818. MR 911096, DOI 10.1090/S0002-9947-1987-0911096-0
- Steven R. Costenoble, Unoriented bordism for odd-order groups, Topology Appl. 28 (1988), no. 3, 277–287. MR 931528, DOI 10.1016/0166-8641(88)90047-8
- Tammo tom Dieck, Bordism of $G$-manifolds and integrality theorems, Topology 9 (1970), 345–358. MR 266241, DOI 10.1016/0040-9383(70)90058-3
- Henning Hauschild, Äquivariante Transversalität und äquivariante Bordismentheorien, Arch. Math. (Basel) 26 (1975), no. 5, 536–546. MR 402787, DOI 10.1007/BF01229778
- G. Lewis, J. P. May, and J. McClure, Ordinary $RO(G)$-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 208–212. MR 598689, DOI 10.1090/S0273-0979-1981-14886-2
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- L. G. Lewis, J. P. May, and J. E. McClure, Classifying $G$-spaces and the Segal conjecture, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 165–179. MR 686144
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- Stefan Waner, Equivariant $R\textrm {O}(G)$-graded bordism theories, Topology Appl. 17 (1984), no. 1, 1–26. MR 730020, DOI 10.1016/0166-8641(84)90019-1
- Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150. MR 250324, DOI 10.1016/0040-9383(69)90005-6
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 231-254
- MSC: Primary 57R85; Secondary 55P42
- DOI: https://doi.org/10.1090/S0002-9947-1989-0958887-X
- MathSciNet review: 958887