The transfer ideal of quadratic forms and a Hasse norm theorem mod squares
HTML articles powered by AMS MathViewer
- by David B. Leep and Adrian R. Wadsworth
- Trans. Amer. Math. Soc. 315 (1989), 415-432
- DOI: https://doi.org/10.1090/S0002-9947-1989-0986030-X
- PDF | Request permission
Abstract:
Any finite degree field extension $K/F$ determines an ideal ${\mathcal {T}_{K/F}}$ of the Witt ring $WF$ of $F$, called the transfer ideal, which is the image of any nonzero transfer map $WK \to WF$. The ideal ${\mathcal {T}_{K/F}}$ is computed for certain field extensions, concentrating on the case where $K$ has the form $F\left ({\sqrt {{a_1}} , \ldots ,\sqrt {{a_n}} } \right )$, ${a_i} \in F$. When $F$ and $K$ are global fields, we investigate whether there is a local global principle for membership in ${\mathcal {T}_{K/F}}$. This is shown to be equivalent to the existence of a "Hasse norm theorem mod squares," i.e., a local global principle for the image of the norm map ${N_{K/F}}: {K^\ast }/{K^{\ast 2}} \to {F^\ast }/{F^{\ast 2}}$. It is shown that such a Hasse norm theorem holds whenever $K = F(\sqrt {a_1},\ldots ,\sqrt {a_n})$, although it does not always hold for more general extensions of global fields, even some Galois extensions with group $\mathbb {Z}/2\mathbb {Z} \times \mathbb {Z}/4\mathbb {Z}$.References
- Jón Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra 36 (1975), no. 3, 448–491 (French). MR 389761, DOI 10.1016/0021-8693(75)90145-3
- Rikkert Bos, Quadratic forms, orderings and abstract Witt rings, Rijksuniversiteit te Utrecht, Utrecht, 1984. Dissertation, Rijksuniversiteit te Utrecht, Utrecht, 1984; With a Dutch summary. MR 756809
- Ludwig Bröcker, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann. 210 (1974), 233–256 (German). MR 354549, DOI 10.1007/BF01350587
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665
- Richard Elman, Quadratic forms and the $u$-invariant. III, Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976) Queen’s Papers in Pure and Appl. Math., No. 46, Queen’s Univ., Kingston, Ont., 1977, pp. 422–444. MR 0491490
- Richard Elman and T. Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155–1194. MR 314878, DOI 10.2307/2373568
- Richard Elman and T. Y. Lam, Classification theorems for quadratic forms over fields, Comment. Math. Helv. 49 (1974), 373–381. MR 351997, DOI 10.1007/BF02566738
- Richard Elman, Tsit Yuen Lam, and Alexander Prestel, On some Hasse principles over formally real fields, Math. Z. 134 (1973), 291–301. MR 330045, DOI 10.1007/BF01214693
- Richard Elman, T. Y. Lam, J.-P. Tignol, and Adrian R. Wadsworth, Witt rings and Brauer groups under multiquadratic extensions. I, Amer. J. Math. 105 (1983), no. 5, 1119–1170. MR 714772, DOI 10.2307/2374336
- Richard Elman, T. Y. Lam, and Adrian R. Wadsworth, Amenable fields and Pfister extensions, Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976) Queen’s Papers in Pure and Appl. Math., No. 46, Queen’s Univ., Kingston, Ont., 1977, pp. 445–492. With an appendix “Excellence of $F(\varphi )/F$ for 2-fold Pfister forms” by J. K. Arason. MR 0560497
- R. Elman, T. Y. Lam, and A. R. Wadsworth, Pfister ideals in Witt rings, Math. Ann. 245 (1979), no. 3, 219–245. MR 553342, DOI 10.1007/BF01673508
- R. Elman, T. Y. Lam, and A. R. Wadsworth, Orderings under field extensions, J. Reine Angew. Math. 306 (1979), 7–27. MR 524644
- Richard Elman, T. Y. Lam, and Adrian R. Wadsworth, Quadratic forms under multiquadratic extensions, Nederl. Akad. Wetensch. Indag. Math. 42 (1980), no. 2, 131–145. MR 577569
- Richard Elman and Alexander Prestel, Reduced stability of the Witt ring of a field and its Pythagorean closure, Amer. J. Math. 106 (1984), no. 5, 1237–1260. MR 761585, DOI 10.2307/2374279
- Yu. L. Ershov, On the mapping of the restriction of spaces of orders of fields, Sibirsk. Mat. Zh. 27 (1986), no. 2, 47–54, 221 (Russian). MR 890300
- Gerald J. Janusz, Algebraic number fields, Pure and Applied Mathematics, Vol. 55, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0366864 M. Krüskemper, On real local-global principles, preprint, Univ. of Münster, West Germany, 1988.
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410 D. B. Leep, Invariants of quadratic forms under algebraic extensions, preprint, Univ. of Kentucky, 1988. D. B. Leep and A. R. Wadsworth, On the Hasse norm theorem $\bmod \, p$ (in preparation). O. T. O’Meara, Introduction to quadratic forms, Springer-Verlag, New York, 1963.
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Daniel B. Shapiro and David Leep, Piecewise equivalence of quadratic forms, Comm. Algebra 11 (1983), no. 2, 183–217. MR 688047, DOI 10.1080/00927878308822843
- Daniel B. Shapiro, Jean-Pierre Tignol, and Adrian R. Wadsworth, Witt rings and Brauer groups under multiquadratic extensions. II, J. Algebra 78 (1982), no. 1, 58–90. MR 677712, DOI 10.1016/0021-8693(82)90102-8
- André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 415-432
- MSC: Primary 11E81; Secondary 11E12, 11R37
- DOI: https://doi.org/10.1090/S0002-9947-1989-0986030-X
- MathSciNet review: 986030