## Multiresolution approximations and wavelet orthonormal bases of $L^ 2(\textbf {R})$

HTML articles powered by AMS MathViewer

- by Stephane G. Mallat PDF
- Trans. Amer. Math. Soc.
**315**(1989), 69-87 Request permission

## Abstract:

A multiresolution approximation is a sequence of embedded vector spaces ${({{\mathbf {V}}_j})_{j \in {\text {z}}}}$ for approximating ${{\mathbf {L}}^2}({\mathbf {R}})$ functions. We study the properties of a multiresolution approximation and prove that it is characterized by a $2\pi$-periodic function which is further described. From any multiresolution approximation, we can derive a function $\psi (x)$ called a wavelet such that ${(\sqrt {{2^j}} \psi ({2^j}x - k))_{(k,j) \in {{\text {z}}^2}}}$ is an orthonormal basis of ${{\mathbf {L}}^2}({\mathbf {R}})$. This provides a new approach for understanding and computing wavelet orthonormal bases. Finally, we characterize the asymptotic decay rate of multiresolution approximation errors for functions in a Sobolev space ${{\mathbf {H}}^s}$.## References

- Guy Battle,
*A block spin construction of ondelettes. I. Lemarié functions*, Comm. Math. Phys.**110**(1987), no. 4, 601–615. MR**895218**, DOI 10.1007/BF01205550
A. Cohen, - Ingrid Daubechies,
*Orthonormal bases of compactly supported wavelets*, Comm. Pure Appl. Math.**41**(1988), no. 7, 909–996. MR**951745**, DOI 10.1002/cpa.3160410705 - Ronald A. DeVore,
*The approximation of continuous functions by positive linear operators*, Lecture Notes in Mathematics, Vol. 293, Springer-Verlag, Berlin-New York, 1972. MR**0420083**, DOI 10.1007/BFb0059493
D. Esteban and C. Galand, - Paul Federbush,
*Quantum field theory in ninety minutes*, Bull. Amer. Math. Soc. (N.S.)**17**(1987), no. 1, 93–103. MR**888881**, DOI 10.1090/S0273-0979-1987-15521-2 - A. Grossmann and J. Morlet,
*Decomposition of Hardy functions into square integrable wavelets of constant shape*, SIAM J. Math. Anal.**15**(1984), no. 4, 723–736. MR**747432**, DOI 10.1137/0515056
S. Jaffard and Y. Meyer, - Pierre Gilles Lemarié,
*Ondelettes à localisation exponentielle*, J. Math. Pures Appl. (9)**67**(1988), no. 3, 227–236 (French, with English summary). MR**964171** - P. G. Lemarié and Y. Meyer,
*Ondelettes et bases hilbertiennes*, Rev. Mat. Iberoamericana**2**(1986), no. 1-2, 1–18 (French). MR**864650**, DOI 10.4171/RMI/22
S. Mallat, - Philippe Tchamitchian,
*Biorthogonalité et théorie des opérateurs*, Rev. Mat. Iberoamericana**3**(1987), no. 2, 163–189 (French). MR**990857**, DOI 10.4171/RMI/48 - Philippe Tchamitchian,
*Calcul symbolique sur les opérateurs de Calderón-Zygmund et bases inconditionnelles de $L^2(\textbf {R})$*, C. R. Acad. Sci. Paris Sér. I Math.**303**(1986), no. 6, 215–218 (French, with English summary). MR**860820**

*Analyse multiresolutions et filtres miroirs en quadrature*, Preprint, CEREMADE, Université Paris Dauphine, France.

*Applications of quadrature mirror filters to split band voice coding schemes*, Proc. Internat. Conf. Acoustic Speech and Signal Proc., May 1977.

*Bases d’ondelettes dans des ouverts de*$Rn$, J. Math. Pures Appl. (1987). R. Kronland-Martinet, J. Morlet and A. Grossmann,

*Analysis of sound patterns through wavelet transform*, Internat. J. Pattern Recognition and Artificial Intelligence (1988).

*A theory for multiresolution signal decomposition*:

*the wavelet representation*(Tech. Rep. MS-CIS-87-22, Univ. of Pennsylvania, 1987), IEEE Trans. Pattern Analysis and Machine Intelligence, July 1989. Y. Meyer,

*Ondelletes et fonctions splines*, Seminaire Equations aux Derivees Partielles, Ecole Polytechnique, Paris, France, 1986. —,

*Principe d’incertitude, bases hilbertiennes et algebres d’operateurs*, Bourbaki Seminar, 1985-86, no. 662. M. J. Smith and T. P. Barnwell,

*Exact reconstruction techniques for tree-structured subband coders*, IEEE Trans. Acoust. Speech Signal Process

**34**(1986). J. Stromberg,

*A modified Franklin system and higher-order systems of*${R^n}$

*as unconditional bases for Hardy spaces*, Conf. in Harmonic Analysis in honor of A. Zygmund, Wadsworth Math. Series, vol. 2, Wadsworth, Belmont, Calif., pp. 475-493.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**315**(1989), 69-87 - MSC: Primary 42C10; Secondary 41A65
- DOI: https://doi.org/10.1090/S0002-9947-1989-1008470-5
- MathSciNet review: 1008470