Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Multiresolution approximations and wavelet orthonormal bases of $L^ 2(\textbf {R})$
HTML articles powered by AMS MathViewer

by Stephane G. Mallat PDF
Trans. Amer. Math. Soc. 315 (1989), 69-87 Request permission


A multiresolution approximation is a sequence of embedded vector spaces ${({{\mathbf {V}}_j})_{j \in {\text {z}}}}$ for approximating ${{\mathbf {L}}^2}({\mathbf {R}})$ functions. We study the properties of a multiresolution approximation and prove that it is characterized by a $2\pi$-periodic function which is further described. From any multiresolution approximation, we can derive a function $\psi (x)$ called a wavelet such that ${(\sqrt {{2^j}} \psi ({2^j}x - k))_{(k,j) \in {{\text {z}}^2}}}$ is an orthonormal basis of ${{\mathbf {L}}^2}({\mathbf {R}})$. This provides a new approach for understanding and computing wavelet orthonormal bases. Finally, we characterize the asymptotic decay rate of multiresolution approximation errors for functions in a Sobolev space ${{\mathbf {H}}^s}$.
  • Guy Battle, A block spin construction of ondelettes. I. Lemarié functions, Comm. Math. Phys. 110 (1987), no. 4, 601–615. MR 895218, DOI 10.1007/BF01205550
  • A. Cohen, Analyse multiresolutions et filtres miroirs en quadrature, Preprint, CEREMADE, Université Paris Dauphine, France.
  • Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
  • Ronald A. DeVore, The approximation of continuous functions by positive linear operators, Lecture Notes in Mathematics, Vol. 293, Springer-Verlag, Berlin-New York, 1972. MR 0420083, DOI 10.1007/BFb0059493
  • D. Esteban and C. Galand, Applications of quadrature mirror filters to split band voice coding schemes, Proc. Internat. Conf. Acoustic Speech and Signal Proc., May 1977.
  • Paul Federbush, Quantum field theory in ninety minutes, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 93–103. MR 888881, DOI 10.1090/S0273-0979-1987-15521-2
  • A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), no. 4, 723–736. MR 747432, DOI 10.1137/0515056
  • S. Jaffard and Y. Meyer, Bases d’ondelettes dans des ouverts de $Rn$, J. Math. Pures Appl. (1987). R. Kronland-Martinet, J. Morlet and A. Grossmann, Analysis of sound patterns through wavelet transform, Internat. J. Pattern Recognition and Artificial Intelligence (1988).
  • Pierre Gilles Lemarié, Ondelettes à localisation exponentielle, J. Math. Pures Appl. (9) 67 (1988), no. 3, 227–236 (French, with English summary). MR 964171
  • P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 1–18 (French). MR 864650, DOI 10.4171/RMI/22
  • S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation (Tech. Rep. MS-CIS-87-22, Univ. of Pennsylvania, 1987), IEEE Trans. Pattern Analysis and Machine Intelligence, July 1989. Y. Meyer, Ondelletes et fonctions splines, Seminaire Equations aux Derivees Partielles, Ecole Polytechnique, Paris, France, 1986. —, Principe d’incertitude, bases hilbertiennes et algebres d’operateurs, Bourbaki Seminar, 1985-86, no. 662. M. J. Smith and T. P. Barnwell, Exact reconstruction techniques for tree-structured subband coders, IEEE Trans. Acoust. Speech Signal Process 34 (1986). J. Stromberg, A modified Franklin system and higher-order systems of ${R^n}$ as unconditional bases for Hardy spaces, Conf. in Harmonic Analysis in honor of A. Zygmund, Wadsworth Math. Series, vol. 2, Wadsworth, Belmont, Calif., pp. 475-493.
  • Philippe Tchamitchian, Biorthogonalité et théorie des opérateurs, Rev. Mat. Iberoamericana 3 (1987), no. 2, 163–189 (French). MR 990857, DOI 10.4171/RMI/48
  • Philippe Tchamitchian, Calcul symbolique sur les opérateurs de Calderón-Zygmund et bases inconditionnelles de $L^2(\textbf {R})$, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 6, 215–218 (French, with English summary). MR 860820
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C10, 41A65
  • Retrieve articles in all journals with MSC: 42C10, 41A65
Additional Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 315 (1989), 69-87
  • MSC: Primary 42C10; Secondary 41A65
  • DOI:
  • MathSciNet review: 1008470