Isolated singularities of the Schrödinger equation with a good potential
HTML articles powered by AMS MathViewer
- by Juan Luis Vázquez and Cecilia Yarur
- Trans. Amer. Math. Soc. 315 (1989), 711-720
- DOI: https://doi.org/10.1090/S0002-9947-1989-0932451-0
- PDF | Request permission
Abstract:
We study the behaviour near an isolated singularity, say $0$, of nonnegative solutions of the Schrödinger equation $- \Delta u + Vu = 0$ defined in a punctured ball $0 < |x| < R$. We prove that whenever the potential $V$ belongs to the Kato class ${K_n}$ the following alternative, well known in the case of harmonic functions, holds: either $|x{|^{n - 2}}u(x)$ has a positive limit as $|x| \to 0$ or $u$ is continuous at $0$. In the first case $u$ solves the equation $- \Delta u + Vu = a\delta$ in $\{ |x| < R\}$. We discuss the optimality of the class ${K_n}$ and extend the result to solutions $u \ngeq 0$ of $- \Delta u + Vu = f$.References
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, DOI 10.1002/cpa.3160350206
- Haïm Brézis and Pierre-Louis Lions, A note on isolated singularities for linear elliptic equations, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 263–266. MR 634242
- F. Chiarenza, E. Fabes, and N. Garofalo, Harnack’s inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), no. 3, 415–425. MR 857933, DOI 10.1090/S0002-9939-1986-0857933-4
- M. Cranston, E. Fabes, and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1988), no. 1, 171–194. MR 936811, DOI 10.1090/S0002-9947-1988-0936811-2
- M. Cranston, E. Fabes, and Z. Zhao, Potential theory for the Schrödinger equation, Bull. Amer. Math. Soc. (N.S.) 15 (1986), no. 2, 213–216. MR 854557, DOI 10.1090/S0273-0979-1986-15478-9 E. Fabes, Private communication.
- D. Gilbarg and James Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955/56), 309–340. MR 81416, DOI 10.1007/BF02787726
- Tosio Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135–148 (1973). MR 333833, DOI 10.1007/BF02760233
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
- James Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math. 113 (1965), 219–240. MR 176219, DOI 10.1007/BF02391778
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- James Serrin and H. F. Weinberger, Isolated singularities of solutions of linear elliptic equations, Amer. J. Math. 88 (1966), 258–272. MR 201815, DOI 10.2307/2373060
- Juan Luis Vázquez and Cecilia Yarur, Singularités isolées et comportement à l’infini des solutions de l’équation de Schrödinger stationnaire, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 4, 105–108 (French, with English summary). MR 778791
- J. L. Vázquez and C. Yarur, Isolated singularities of the solutions of the Schrödinger equation with a radial potential, Arch. Rational Mech. Anal. 98 (1987), no. 3, 251–284. MR 867726, DOI 10.1007/BF00251174
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 711-720
- MSC: Primary 35J10; Secondary 35B05, 81C05
- DOI: https://doi.org/10.1090/S0002-9947-1989-0932451-0
- MathSciNet review: 932451