Degree theory for equivariant maps. I
HTML articles powered by AMS MathViewer
- by J. Ize, I. Massabò and A. Vignoli
- Trans. Amer. Math. Soc. 315 (1989), 433-510
- DOI: https://doi.org/10.1090/S0002-9947-1989-0935940-8
- PDF | Request permission
Abstract:
A degree theory for equivariant maps is constructed in a simple geometrical way. This degree has all the basic properties of the usual degree theories and takes its values in the equivariant homotopy groups of spheres. For the case of a semifree ${S^1}$-action, a complete computation of these groups is given, the range of the equivariant degree is determined, and the general ${S^1}$-action is reduced to that special case. Among the applications one recovers and unifies both the degree for autonomous differential equations defined by Fuller [F] and the ${S^1}$-degree for gradient maps introduced by Dancer [Da]. Also, a simple but very useful formula of Nirenberg [N] is generalized (see Theorem 4.4(ii)).References
- J. F. Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 483–532. MR 764596, DOI 10.1007/BFb0075584
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144 Group actions on manifolds, Contemp. Math., vol. 36, Amer. Math. Soc., Providence, R. I., 1985.
- Shui Nee Chow, John Mallet-Paret, and James A. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Anal. 2 (1978), no. 6, 753–763. MR 512165, DOI 10.1016/0362-546X(78)90017-2
- E. N. Dancer, A new degree for $S^1$-invariant gradient mappings and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 5, 329–370 (English, with French summary). MR 817033
- E. N. Dancer, Perturbation of zeros in the presence of symmetries, J. Austral. Math. Soc. Ser. A 36 (1984), no. 1, 106–125. MR 720004
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- F. Brock Fuller, An index of fixed point type for periodic orbits, Amer. J. Math. 89 (1967), 133–148. MR 209600, DOI 10.2307/2373103
- K. Gęba, I. Massabò, and A. Vignoli, Generalized topological degree and bifurcation, Nonlinear functional analysis and its applications (Maratea, 1985) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 173, Reidel, Dordrecht, 1986, pp. 55–73. MR 852570
- Marvin J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0215295
- H. Hauschild, Äquivariante Homotopie. I, Arch. Math. (Basel) 29 (1977), no. 2, 158–165 (German). MR 467774, DOI 10.1007/BF01220390
- H. Hauschild, Zerspaltung äquivarianter Homotopiemengen, Math. Ann. 230 (1977), no. 3, 279–292 (German). MR 500966, DOI 10.1007/BF01367581
- Czes Kosniowski, Equivariant cohomology and stable cohomotopy, Math. Ann. 210 (1974), 83–104. MR 413081, DOI 10.1007/BF01360033
- Jorge Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. 7 (1976), no. 174, viii+128. MR 425696, DOI 10.1090/memo/0174
- Jorge Ize, Obstruction theory and multiparameter Hopf bifurcation, Trans. Amer. Math. Soc. 289 (1985), no. 2, 757–792. MR 784013, DOI 10.1090/S0002-9947-1985-0784013-2
- J. Ize, I. Massabò, J. Pejsachowicz, and A. Vignoli, Structure and dimension of global branches of solutions to multiparameter nonlinear equations, Trans. Amer. Math. Soc. 291 (1985), no. 2, 383–435. MR 800246, DOI 10.1090/S0002-9947-1985-0800246-0
- Jorge Ize, Ivar Massabò, and Alfonso Vignoli, Global results on continuation and bifurcation for equivariant maps, Nonlinear functional analysis and its applications (Maratea, 1985) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 173, Reidel, Dordrecht, 1986, pp. 75–111. MR 852571 —, Degree theory for equivariant maps, II (in preparation).
- Jean Leray and Jules Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 51 (1934), 45–78 (French). MR 1509338
- Unni Namboodiri, Equivariant vector fields on spheres, Trans. Amer. Math. Soc. 278 (1983), no. 2, 431–460. MR 701504, DOI 10.1090/S0002-9947-1983-0701504-9
- L. Nirenberg, Comments on nonlinear problems, Matematiche (Catania) 36 (1981), no. 1, 109–119 (1983). With an appendix by Chang Shou Lin. MR 736798
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-DĂĽsseldorf-Johannesburg, 1973. MR 0365062
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
- A. Vanderbauwhede, Local bifurcation and symmetry, Research Notes in Mathematics, vol. 75, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697724
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 433-510
- MSC: Primary 58E07; Secondary 47H15, 58C30
- DOI: https://doi.org/10.1090/S0002-9947-1989-0935940-8
- MathSciNet review: 935940