Relations between $H^ p_ u$ and $L^ p_ u$ in a product space
HTML articles powered by AMS MathViewer
- by Jan-Olov Strömberg and Richard L. Wheeden
- Trans. Amer. Math. Soc. 315 (1989), 769-797
- DOI: https://doi.org/10.1090/S0002-9947-1989-0951891-7
- PDF | Request permission
Abstract:
Relations between $L_u^p$ and $H_u^p$ are studied for the product space ${{\mathbf {R}}^1} \times {{\mathbf {R}}^1}$ in the case $1 < p < \infty$ and $u({x_1},{x_2}) = |{Q_1}({x_1}){|^p}|{Q_2}({x_2}){|^p}w({x_1},{x_2})$, where ${Q_1}$ and ${Q_2}$ are polynomials and $w$ satisfies the ${A_p}$ condition for rectangles. A description of the distributions in $H_u^p$ is given. Questions about boundary values and about the existence of dense subsets of smooth functions satisfying appropriate moment conditions are also considered.References
- Ernst Adams, On the identification of weighted Hardy spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 477–489. MR 703279, DOI 10.1512/iumj.1983.32.32034
- S. Chanillo, J.-O. Strömberg, and R. L. Wheeden, Norm inequalities for potential-type operators, Rev. Mat. Iberoamericana 3 (1987), no. 3-4, 311–335. MR 996820, DOI 10.4171/RMI/52
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Cora Sadosky and Richard L. Wheeden, Some weighted norm inequalities for the Fourier transform of functions with vanishing moments, Trans. Amer. Math. Soc. 300 (1987), no. 2, 521–533. MR 876464, DOI 10.1090/S0002-9947-1987-0876464-4
- Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673, DOI 10.1007/BFb0091154 J.-O. Strömberg and R. L. Wheeden, Relations between $H_u^p$ and $L_u^p$ with polynomial weights, Trans. Amer. Math. Soc. 270 (1982), 439-467. —, Weighted norm estimates for the Fourier transform with a pair of weights (to appear).
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 769-797
- MSC: Primary 46E15; Secondary 42B30
- DOI: https://doi.org/10.1090/S0002-9947-1989-0951891-7
- MathSciNet review: 951891