Infima of convex functions
HTML articles powered by AMS MathViewer
- by Gerald Beer
- Trans. Amer. Math. Soc. 315 (1989), 849-859
- DOI: https://doi.org/10.1090/S0002-9947-1989-0953536-9
- PDF | Request permission
Abstract:
Let $\Gamma (X)$ be the lower semicontinuous, proper, convex functions on a real normed linear space $X$. We produce a simple description of what is, essentially, the weakest topology on $\Gamma (X)$ such that the value functional $f \to \inf f$ is continuous on $\Gamma (X)$. When $X$ is reflexive, convergence of a sequence in this topology is equivalent to Mosco plus pointwise convergence of the corresponding sequence of conjugate convex functions.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850 H. Attouch and H. Brezis, Duality for the sum of convex functions in general Banach spaces, AVAMAC, Université de Perpignan, 1984.
- Gerald Beer, On Mosco convergence of convex sets, Bull. Austral. Math. Soc. 38 (1988), no. 2, 239–253. MR 969914, DOI 10.1017/S0004972700027519
- Gerald Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15–36. MR 978800, DOI 10.1080/01630568908816288
- Gerald Beer, On the Young-Fenchel transform for convex functions, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1115–1123. MR 937844, DOI 10.1090/S0002-9939-1988-0937844-8
- John R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650456
- Richard B. Holmes, A course on optimization and best approximation, Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, Berlin-New York, 1972. MR 0420367
- J.-L. Joly, Une famille de topologies sur l’ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. Pures Appl. (9) 52 (1973), 421–441 (1974) (French). MR 500129
- Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- Jean-Jacques Moreau, Inf-convolution des fonctions numériques sur un espace vectoriel, C. R. Acad. Sci. Paris 256 (1963), 5047–5049 (French). MR 154151
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518–535. MR 283586, DOI 10.1016/0022-247X(71)90200-9
- Raoul Robert, Convergence de fonctionnelles convexes, J. Math. Anal. Appl. 45 (1974), 533–555 (French). MR 352927, DOI 10.1016/0022-247X(74)90050-X
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI 10.1016/0022-247X(77)90060-9
- David W. Walkup and Roger J.-B. Wets, Continuity of some convex-cone-valued mappings, Proc. Amer. Math. Soc. 18 (1967), 229–235. MR 209806, DOI 10.1090/S0002-9939-1967-0209806-6
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 849-859
- MSC: Primary 90C25; Secondary 26B25, 49A50, 54C08, 90C48
- DOI: https://doi.org/10.1090/S0002-9947-1989-0953536-9
- MathSciNet review: 953536