Hyperconvexity and nonexpansive multifunctions
HTML articles powered by AMS MathViewer
- by Robert Sine
- Trans. Amer. Math. Soc. 315 (1989), 755-767
- DOI: https://doi.org/10.1090/S0002-9947-1989-0954603-6
- PDF | Request permission
Abstract:
It is shown that a ball intersection valued nonexpansive multifunction on a hyperconvex space admits a nonexpansive point valued selection. This implies fixed point theorems for such multifunctions and to certain point valued nonexpansive maps. The result is used to study best approximation and to show the space of all nonexpansive maps of a bounded hyperconvex space is hyperconvex.References
- N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405–439. MR 84762
- Jean-Bernard Baillon, Nonexpansive mapping and hyperconvex spaces, Fixed point theory and its applications (Berkeley, CA, 1986) Contemp. Math., vol. 72, Amer. Math. Soc., Providence, RI, 1988, pp. 11–19. MR 956475, DOI 10.1090/conm/072/956475 B. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Acad., Bucuresti, 1976.
- Kim C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, Cambridge, 1985. MR 790845, DOI 10.1017/CBO9780511625756
- Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR 755330, DOI 10.1007/978-3-642-69512-4
- Richard B. Holmes, A course on optimization and best approximation, Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, Berlin-New York, 1972. MR 0420367
- El Mostapha Jawhari, Maurice Pouzet, and Driss Misane, Retracts: graphs and ordered sets from the metric point of view, Combinatorics and ordered sets (Arcata, Calif., 1985) Contemp. Math., vol. 57, Amer. Math. Soc., Providence, RI, 1986, pp. 175–226. MR 856237, DOI 10.1090/conm/057/856237
- W. A. Kirk, Fixed point theory for nonexpansive mappings. II, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982) Contemp. Math., vol. 18, Amer. Math. Soc., Providence, RI, 1983, pp. 121–140. MR 728596, DOI 10.1090/conm/018/728596
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- Michael Lin and Robert Sine, On the fixed point set of nonexpansive order preserving maps, Math. Z. 203 (1990), no. 2, 227–234. MR 1033433, DOI 10.1007/BF02570732
- William O. Ray and Robert C. Sine, Nonexpansive mappings with precompact orbits, Fixed point theory (Sherbrooke, Que., 1980) Lecture Notes in Math., vol. 886, Springer, Berlin-New York, 1981, pp. 409–416. MR 643018
- R. C. Sine, On nonlinear contraction semigroups in sup norm spaces, Nonlinear Anal. 3 (1979), no. 6, 885–890. MR 548959, DOI 10.1016/0362-546X(79)90055-5
- Robert Sine, Hyperconvexity and approximate fixed points, Nonlinear Anal. 13 (1989), no. 7, 863–869. MR 999336, DOI 10.1016/0362-546X(89)90079-5
- Paolo M. Soardi, Existence of fixed points of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc. 73 (1979), no. 1, 25–29. MR 512051, DOI 10.1090/S0002-9939-1979-0512051-6
- Mohamed A. Khamsi, On the stability of the fixed point property in $l_p$ spaces, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23 (1993), no. 1, 57–63 (English, with English and Serbo-Croatian summaries). MR 1319775
- W. A. Kirk, Nonexpansive mappings in product spaces, set-valued mappings and $k$-uniform rotundity, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 51–64. MR 843594, DOI 10.1090/pspum/045.2/843594
- Teck Cheong Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space, Bull. Amer. Math. Soc. 80 (1974), 1123–1126. MR 394333, DOI 10.1090/S0002-9904-1974-13640-2
- Simeon Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), no. 1, 104–113. MR 514991, DOI 10.1016/0022-247X(78)90222-6
- Simeon Reich, Integral equations, hyperconvex spaces and the Hilbert ball, Nonlinear analysis and applications (Arlington, Tex., 1986) Lecture Notes in Pure and Appl. Math., vol. 109, Dekker, New York, 1987, pp. 517–525. MR 912333
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 755-767
- MSC: Primary 54C65; Secondary 47H09, 47H10, 54G05
- DOI: https://doi.org/10.1090/S0002-9947-1989-0954603-6
- MathSciNet review: 954603