Pixley-Roy hyperspaces of $\omega$-graphs
HTML articles powered by AMS MathViewer
- by J. D. Mashburn
- Trans. Amer. Math. Soc. 315 (1989), 697-709
- DOI: https://doi.org/10.1090/S0002-9947-1989-0961625-8
- PDF | Request permission
Abstract:
The techniques developed by Wage and Norden are used to show that the Pixley-Roy hyperspaces of any two $\omega$-graphs are homeomorphic. The Pixley-Roy hyperspaces of several subsets of ${{\mathbf {R}}^n}$ are also shown to be homeomorphic.References
- Peg Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29 (1988), no. 1, 93–106. MR 944073, DOI 10.1016/0166-8641(88)90061-2
- Eric K. van Douwen, The Pixley-Roy topology on spaces of subsets, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975–1976) Academic Press, New York, 1977, pp. 111–134. MR 0440489
- David J. Lutzer, Pixley-Roy topology, Topology Proc. 3 (1978), no. 1, 139–158 (1979). MR 540485
- Jeffrey Norden, Pixley-Roy spaces over graphs, Topology Appl. 35 (1990), no. 2-3, 217–234. MR 1058802, DOI 10.1016/0166-8641(90)90107-D
- Michael L. Wage, Homogeneity of Pixley-Roy spaces, Topology Appl. 28 (1988), no. 1, 45–57. MR 927281, DOI 10.1016/0166-8641(88)90035-1
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 697-709
- MSC: Primary 54B20
- DOI: https://doi.org/10.1090/S0002-9947-1989-0961625-8
- MathSciNet review: 961625