Geometric quantization and the universal enveloping algebra of a nilpotent Lie group
HTML articles powered by AMS MathViewer
- by Niels Vigand Pedersen
- Trans. Amer. Math. Soc. 315 (1989), 511-563
- DOI: https://doi.org/10.1090/S0002-9947-1989-0967317-3
- PDF | Request permission
Abstract:
We study geometric quantization in connection with connected nilpotent Lie groups. First it is proved that the quantization map associated with a (real) polarized coadjoint orbit establishes an isomorphism between the space of polynomial quantizable functions and the space of polynomial quantized operators. Our methods allow noninductive proofs of certain basic facts from Kirillov theory. It is then shown how the quantization map connects with the universal enveloping algebra. This is the main result of the paper. Finally we show how one can explicitly compute global canonical coordinates on coadjoint orbits, and that this can be done simultaneously on all orbits contained in a given stratum of what we call "the fine $\mathcal {F}$-stratification of the dual of the Lie algebra". This is a generalization of a result of M. Vergne about simultaneous canonical coodinates for orbits in general position.References
- D. Arnal, J.-C. Cortet, P. Molin, and G. Pinczon, Covariance and geometrical invariance in $\ast$ quantization, J. Math. Phys. 24 (1983), no. 2, 276â283. MR 692302, DOI 10.1063/1.525703
- Lawrence Corwin, Frederick P. Greenleaf, and Richard Penney, A general character formula for irreducible projections on $L^{2}$ of a nilmanifold, Math. Ann. 225 (1977), no. 1, 21â32. MR 425021, DOI 10.1007/BF01364889
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Ăditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- J. Dixmier, ReprĂŠsentations irrĂŠductibles des algèbres de Lie nilpotentes, An. Acad. Brasil. Ci. 35 (1963), 491â519 (French). MR 182682
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57â110 (Russian). MR 0142001
- A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Translation 1951 (1951), no. 39, 33. MR 0039734
- Niels Vigand Pedersen, On the infinitesimal kernel of irreducible representations of nilpotent Lie groups, Bull. Soc. Math. France 112 (1984), no. 4, 423â467 (English, with French summary). MR 802535 â, Characters of solvable Lie groups, Harmonische Analyse und Darstellungstheorie topologischer Gruppen, Tagungsbericht 33/1985, Mathematisches Forschungsinstitut, Oberwolfach, 1985.
- Niels Vigand Pedersen, On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications. I, Math. Ann. 281 (1988), no. 4, 633â669. MR 958263, DOI 10.1007/BF01456843
- L. PukĂĄnszky, On the characters and the Plancherel formula of nilpotent groups, J. Functional Analysis 1 (1967), 255â280. MR 0228656, DOI 10.1016/0022-1236(67)90015-8
- Michèle Vergne, La structure de Poisson sur lâalgèbre symĂŠtrique dâune algèbre de Lie nilpotente, Bull. Soc. Math. France 100 (1972), 301â335 (French). MR 379752
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 511-563
- MSC: Primary 22E27; Secondary 58F06
- DOI: https://doi.org/10.1090/S0002-9947-1989-0967317-3
- MathSciNet review: 967317