Value functions on central simple algebras
HTML articles powered by AMS MathViewer
- by Patrick J. Morandi
- Trans. Amer. Math. Soc. 315 (1989), 605-622
- DOI: https://doi.org/10.1090/S0002-9947-1989-0986697-6
- PDF | Request permission
Abstract:
In this paper we study noncommutative valuation rings as defined by Dubrovin. While there is in general no valuation associated to a Dubrovin valuation ring, we show that there is a value function associated to any Dubrovin valuation ring integral over its center. By using value functions we obtain information on Dubrovin valuation rings in a tensor product, both generalizing and giving a much simpler proof of a result about valued division algebras. By being able to work directly with central simple algebras we gain new information about division algebras over Henselian fields.References
- S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408–420. MR 318216, DOI 10.1007/BF02764632
- Herbert Benz, Über eine Bewertungstheorie der Algebren und ihre Bedeutung für die Arithmetik, Schriftenreihe Inst. Math. Deutsch. Akad. Wiss. Berlin, Heft 9, Akademie-Verlag, Berlin, 1961 (German). MR 0150137 N. Bourbaki, Commutative algebra, Chapter 6, Valuations, Hermann, Paris, 1961.
- H.-H. Brungs and J. Gräter, Extensions of valuation rings in central simple algebras, Trans. Amer. Math. Soc. 317 (1990), no. 1, 287–302. MR 946216, DOI 10.1090/S0002-9947-1990-0946216-5
- Peter Draxl, Ostrowski’s theorem for Henselian valued skew fields, J. Reine Angew. Math. 354 (1984), 213–218. MR 767581, DOI 10.1515/crll.1984.354.213
- Peter Draxl and Martin Kneser (eds.), $SK_{1}$ von Schiefkörpern, Lecture Notes in Mathematics, vol. 778, Springer, Berlin, 1980 (German). Seminar held at Bielefeld and Göttingen, 1976. MR 591206
- N. I. Dubrovin, Noncommutative valuation rings, Trudy Moskov. Mat. Obshch. 45 (1982), 265–280 (Russian). MR 704633
- N. I. Dubrovin, Noncommutative valuation rings in simple finite-dimensional algebras over a field, Mat. Sb. (N.S.) 123(165) (1984), no. 4, 496–509 (Russian). MR 740675
- Otto Endler, Valuation theory, Universitext, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971). MR 0357379
- Bill Jacob and Adrian R. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc. 293 (1986), no. 2, 693–721. MR 816320, DOI 10.1090/S0002-9947-1986-0816320-X
- Bill Jacob and Adrian Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), no. 1, 126–179. MR 1031915, DOI 10.1016/0021-8693(90)90047-R
- Nathan Jacobson, $\textrm {PI}$-algebras, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin-New York, 1975. An introduction. MR 0369421
- Achim Kupferoth, Valuated division algebras and crossed products, J. Algebra 108 (1987), no. 1, 139–150. MR 887197, DOI 10.1016/0021-8693(87)90127-X
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Pat Morandi, The Henselization of a valued division algebra, J. Algebra 122 (1989), no. 1, 232–243. MR 994945, DOI 10.1016/0021-8693(89)90247-0 —, Valuation rings in division rings and central simple algebras, Doctoral Dissertation, Univ. of California, San Diego, 1988.
- Patrick J. Morandi and Adrian R. Wadsworth, Integral Dubrovin valuation rings, Trans. Amer. Math. Soc. 315 (1989), no. 2, 623–640. MR 986696, DOI 10.1090/S0002-9947-1989-0986696-4
- V. P. Platonov, The Tannaka-Artin problem, and reduced $K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 2, 227–261, 469 (Russian). MR 0407082
- V. P. Platonov and V. I. Yanchevskiĭ, Dieudonné’s conjecture on the structure of unitary groups over a skew-field and Hermitian $K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 6, 1266–1294 (Russian). MR 772116
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776
- J.-P. Tignol, Cyclic and elementary abelian subfields of Malcev-Neumann division algebras, J. Pure Appl. Algebra 42 (1986), no. 2, 199–220. MR 857567, DOI 10.1016/0022-4049(86)90080-0
- J.-P. Tignol and S. A. Amitsur, Kummer subfields of Mal′cev-Neumann division algebras, Israel J. Math. 50 (1985), no. 1-2, 114–144. MR 788071, DOI 10.1007/BF02761120
- J.-P. Tignol and A. R. Wadsworth, Totally ramified valuations on finite-dimensional division algebras, Trans. Amer. Math. Soc. 302 (1987), no. 1, 223–250. MR 887507, DOI 10.1090/S0002-9947-1987-0887507-6
- Jan Van Geel, Places and valuations in noncommutative ring theory, Lecture Notes in Pure and Applied Mathematics, vol. 71, Marcel Dekker, Inc., New York, 1981. MR 639305
- Adrian R. Wadsworth, Dubrovin valuation rings, Perspectives in ring theory (Antwerp, 1987) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 233, Kluwer Acad. Publ., Dordrecht, 1988, pp. 359–374. MR 1048422
- Adrian R. Wadsworth, Dubrovin valuation rings and Henselization, Math. Ann. 283 (1989), no. 2, 301–328. MR 980600, DOI 10.1007/BF01446437
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 605-622
- MSC: Primary 16A10; Secondary 11S45, 12J10
- DOI: https://doi.org/10.1090/S0002-9947-1989-0986697-6
- MathSciNet review: 986697