Area integral estimates for caloric functions
HTML articles powered by AMS MathViewer
- by Russell M. Brown
- Trans. Amer. Math. Soc. 315 (1989), 565-589
- DOI: https://doi.org/10.1090/S0002-9947-1989-0994163-7
- PDF | Request permission
Abstract:
We study the relationship between the area integral and the parabolic maximal function of solutions to the heat equation in domains whose boundary satisfies a $\left ({\frac {1}{2},1}\right )$ mixed Lipschitz condition. Our main result states that the area integral and the parabolic maximal function are equivalent in ${L^p}(\mu )$, $0 < p < \infty$. The measure $\mu$ must satisfy Muckenhoupt’s ${A_\infty }$-condition with respect to caloric measure. We also give a Fatou theorem which shows that the existence of parabolic limits is a.e. (with respect to caloric measure) equivalent to the finiteness of the area integral.References
- R. M. Brown, Layer potentials and boundary value problems for the heat equation on Lipschitz cylinders, Thesis, University of Minnesota, 1987.
- Russell M. Brown, The oblique derivative problem for the heat equation in Lipschitz cylinders, Proc. Amer. Math. Soc. 107 (1989), no. 1, 237–250. MR 987608, DOI 10.1090/S0002-9939-1989-0987608-5
- D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 527–544. MR 340557, DOI 10.4064/sm-44-6-527-544
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1–64. MR 417687, DOI 10.1016/0001-8708(75)90099-7
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Björn E. J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math. 67 (1980), no. 3, 297–314. MR 592391, DOI 10.4064/sm-67-3-297-314
- Björn E. J. Dahlberg, David S. Jerison, and Carlos E. Kenig, Area integral estimates for elliptic differential operators with nonsmooth coefficients, Ark. Mat. 22 (1984), no. 1, 97–108. MR 735881, DOI 10.1007/BF02384374
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Eugene B. Fabes, Nicola Garofalo, and Sandro Salsa, Comparison theorems for temperatures in noncylindrical domains, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 77 (1984), no. 1-2, 1–12 (1985) (English, with Italian summary). MR 884371
- Eugene Fabes and Sandro Salsa, Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders, Trans. Amer. Math. Soc. 279 (1983), no. 2, 635–650. MR 709573, DOI 10.1090/S0002-9947-1983-0709573-7
- J. R. Hattemer, Boundary behavior of temperatures. I, Studia Math. 25 (1964/65), 111–155. MR 181838, DOI 10.4064/sm-25-1-111-155
- Richard A. Hunt and Richard L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. MR 274787, DOI 10.1090/S0002-9947-1970-0274787-0
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI 10.1016/0001-8708(82)90054-8
- B. Frank Jones Jr., Singular integrals and a boundary value problem for the heat equation. , Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 196–207. MR 0235432
- B. Frank Jones Jr. and C. C. Tu, Non-tangential limits for a solution of the heat equation in a two-dimensional $\textrm {Lip}_{\alpha }$ region, Duke Math. J. 37 (1970), 243–254. MR 259388
- Robert Kaufman and Jang Mei Wu, Singularity of parabolic measures, Compositio Math. 40 (1980), no. 2, 243–250. MR 563542
- John T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243–262. MR 294903, DOI 10.1090/S0002-9947-1972-0294903-6
- Carlos E. Kenig and Jill Pipher, The oblique derivative problem on Lipschitz domains with $L^p$ data, Amer. J. Math. 110 (1988), no. 4, 715–737. MR 955294, DOI 10.2307/2374647
- John L. Lewis and Judy Silver, Parabolic measure and the Dirichlet problem for the heat equation in two dimensions, Indiana Univ. Math. J. 37 (1988), no. 4, 801–839. MR 982831, DOI 10.1512/iumj.1988.37.37039
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- C. Segovia and R. L. Wheeden, On the function $g_{\lambda }^{\ast }$ and the heat equation, Studia Math. 37 (1970), 57–93. MR 285907, DOI 10.4064/sm-37-1-57-93
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
- Gregory Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572–611. MR 769382, DOI 10.1016/0022-1236(84)90066-1
- Jang Mei G. Wu, On parabolic measures and subparabolic functions, Trans. Amer. Math. Soc. 251 (1979), 171–185. MR 531974, DOI 10.1090/S0002-9947-1979-0531974-X
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 565-589
- MSC: Primary 35K05; Secondary 42B25, 45P05
- DOI: https://doi.org/10.1090/S0002-9947-1989-0994163-7
- MathSciNet review: 994163