Quantization of curvature of harmonic two-spheres in Grassmann manifolds
HTML articles powered by AMS MathViewer
- by Yunbo Zheng
- Trans. Amer. Math. Soc. 316 (1989), 193-214
- DOI: https://doi.org/10.1090/S0002-9947-1989-0935535-6
- PDF | Request permission
Abstract:
Various pinching theorems for curvature of minimal two-spheres in Grassmann manifolds have been proved. In particular, we show that when the curvature is large, then the minimal map from ${S^2}$ into $G(m,N)$ must be either holomorphic or antiholomorphic. Also, minimal two-spheres of curvature $\kappa \geqslant 2$ in $G(2,4)$ have been classified.References
- John Bolton, Gary R. Jensen, Marco Rigoli, and Lyndon M. Woodward, On conformal minimal immersions of $S^2$ into $\textbf {C}\textrm {P}^n$, Math. Ann. 279 (1988), no. 4, 599–620. MR 926423, DOI 10.1007/BF01458531
- F. Burstall, J. Rawnsley, and S. Salamon, Stable harmonic $2$-spheres in symmetric spaces, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 2, 274–278. MR 876963, DOI 10.1090/S0273-0979-1987-15516-9
- Shiing Shen Chern and Jon G. Wolfson, Harmonic maps of the two-sphere into a complex Grassmann manifold. II, Ann. of Math. (2) 125 (1987), no. 2, 301–335. MR 881271, DOI 10.2307/1971312
- Quo-Shin Chi and Yunbo Zheng, Rigidity of pseudo-holomorphic curves of constant curvature in Grassmann manifolds, Trans. Amer. Math. Soc. 313 (1989), no. 1, 393–406. MR 992602, DOI 10.1090/S0002-9947-1989-0992602-9
- A. M. Din and W. J. Zakrzewski, General classical solutions in the $\textbf {CP}^{n-1}$ model, Nuclear Phys. B 174 (1980), no. 2-3, 397–406. MR 591620, DOI 10.1016/0550-3213(80)90291-6
- J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), no. 3, 217–263. MR 716372, DOI 10.1016/0001-8708(83)90062-2
- Jost-Hinrich Eschenburg, Irwen Válle Guadalupe, and Renato de Azevedo Tribuzy, The fundamental equations of minimal surfaces in $\textbf {C}\textrm {P}^2$, Math. Ann. 270 (1985), no. 4, 571–598. MR 776173, DOI 10.1007/BF01455305
- Jayakumar Ramanathan, Harmonic maps from $S^{2}$ to $G_{2,4}$, J. Differential Geom. 19 (1984), no. 1, 207–219. MR 739787
- Marco Rigoli, A rigidity result for holomorphic immersions of surfaces in $\textbf {C}\textrm {P}^n$, Proc. Amer. Math. Soc. 93 (1985), no. 2, 317–320. MR 770544, DOI 10.1090/S0002-9939-1985-0770544-3 Y. Zheng, Harmonic maps into Grassmann manifolds, Washington Univ. Thesis, 1987.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 316 (1989), 193-214
- MSC: Primary 58E20; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9947-1989-0935535-6
- MathSciNet review: 935535